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1. Document S1. scRNA-seq DE Analysis Approaches 

Notation: 𝑌𝑖𝑗: random variable (rv) represents observed read (UMI) counts of ith (i = 1, 2, …, N) gene in 

jth (j = 1, 2, …, M) cell; N: total number of genes; M: total number of cells; 𝜇𝑖𝑗: mean of ith gene in jth cell 

for NB distribution (count part of the model); 𝜃𝑖𝑗 (= 𝜑𝑖𝑗
−1) and 𝜑𝑖𝑗: size and dispersion parameters 

respectively of ith gene in jth cell for NB distribution; 𝜋𝑖𝑗: mixture probability (zero inflation probability) 

of ith gene in jth cell; 𝑠𝑗: size factor of jth cell; 𝑍𝑖𝑗: rv represents the true (unknown) concentration of reads 

for ith gene of jth cell; 𝑿: design matrix for cell group information, the jth row of X,  𝑋𝑗 =

[𝑋𝑗1, 𝑋𝑗2, … , 𝑋𝑗𝑁]; 𝑊𝑖𝑗: indicator rv representing the rate of expression for ith gene in jth cell, i.e. 𝑊𝑖𝑗 =

0: 𝑌𝑖𝑗 = 0; 𝑊𝑖𝑗 = 1: 𝑌𝑖𝑗 > 0.  

Zero Inflated Negative Binomial Model 

For any 𝜋𝑖𝑗 ∈ [0, 1], 𝑌𝑖𝑗 is assumed to follow a ZINB distribution [4,7,8]. The PMF of the ZINB 

distribution is expressed as follows. 

𝑓𝑍𝐼𝑁𝐵(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] = 𝜋𝑖𝑗𝛿0(𝑦) + (1 − 𝜋𝑖𝑗)𝑓𝑁𝐵(𝑦)               ∀ 𝑦 = 0, 1, 2, …                       (1) 

where, 𝑓𝑁𝐵(. ): PMF of NB distribution; 𝛿0(. ): Dirac’s delta function. Here, 𝛿0(. ) used to model the 

excess zeros in scRNA-seq data, and its PMF expressed as: 

  𝛿0(𝑌𝑖𝑗 = 𝑦) : = {
1;     𝑦 = 0
0;     𝑦 ≠ 0

                                                                                                        (2) 

Now, the PMF of the ZINB distribution to model the UMI counts is given as: 

 𝑃[𝑌𝑖𝑗 = 𝑦] =

{
 
 

 
 𝜋𝑖𝑗 + (1 − 𝜋𝑖𝑗) (

𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗𝑘

                                    𝑤ℎ𝑒𝑛 𝑦 = 0

(1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑦+ 𝜃𝑖𝑗)

𝐺(𝑦+1)𝐺(𝜃𝑖𝑗)
(

𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝑦

;   𝑦 > 0

                          (3) 

For, 𝑌𝑖𝑗~𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗), the expected value and variance of 𝑌𝑖𝑗 can be obtained as (Supp. Document 

S1): 

𝐸(𝑌𝑖𝑗) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗                                                                                                                  (4) 



 𝑉(𝑌𝑖𝑗) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗 (1 + 𝜋𝑖𝑗𝜇𝑖𝑗 +
𝜇𝑖𝑗

𝜃𝑖𝑗
)                                                                                  (5)   

If 𝜋𝑖𝑗 = 0 
.
⇒ 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗) → 𝑁𝐵(𝜇𝑖𝑗 , 𝜃𝑖𝑗) 

If 𝜑𝑖𝑗 → 0 (𝑁𝑜 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)
.
⇒  𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗)  → 𝑍𝐼𝑃(𝜋𝑖𝑗 , 𝜇𝑖𝑗) 

DEsingle 

DEsingle [7] is a Zero Inflated Model (ZIM) based approach that employs the ZINB model (Eq. 3) to 

discriminate the observed zero values into two parts: dropout and true zeros (i.e., from NB distribution). 

Under this model formulation, DEsingle is designed to overcome the issues of the excessive zeros 

observed in the scRNA-seq data. To detect DE genes between two cell groups, DEsingle first calculates 

the MLE of two ZINB populations parameters in Eq. 3, and then detects the DE genes using the LRT 

statistic through the constrained MLE of the two models’ parameters under the null hypothesis. Here, the 

p-values for the genes were computed through executing the DEsingle function implemented in DEsingle 

R package [7]. 

DECENT 

DECENT [8] is based on ZIM, precisely use the ZINB model given in Eq. 3 for fitting scRNA-seq count 

data, which also explicitly and accurately models the molecular capture process using a Beta-Binomial 

model. Here, the unobserved true UMI counts, 𝑍𝑖𝑗, are assumed to follow ZINB model (Eq. 3).  Further, 

DECENT assumes the following models for different processes. 

𝑍𝑖𝑗; 𝜋𝑖𝑗 , 𝑠𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗  ~ 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝑠𝑗𝜇𝑖𝑗 , 𝜃𝑖𝑗)                                                   (6)    

𝑌𝑖𝑗|𝑍𝑖𝑗 = 𝑘; 𝑝𝑖𝑗 ~ 𝐵(𝑘, 𝑝𝑖𝑗)                                                                           (7) 

𝑝𝑖𝑗  ~ 𝐵𝑒𝑡𝑎(𝑎𝑖𝑗 , 𝑏𝑖𝑗)                                                                                      (8) 

where, 𝑝𝑖𝑗 is the transcriptional capture rate for ith gene of jth cell, B(.): Binomial distribution, 𝑎𝑖𝑗 , 𝑎𝑛𝑑 𝑏𝑖𝑗 

in Eq. 14 are the parameters of the beta distribution. DECENT uses the Expected Conditional 

Maximization (ECM) algorithm to calculate MLE of the ZINB model parameters (Eq. 6-8) using the 



observed data through integrating molecular capturing procedure in the presence of external RNA-spike 

ins. To detect DE genes, DECENT uses the GLM framework in Eq. 15 to model the 𝜇𝑖𝑗. 

𝑙𝑜𝑔 𝜇𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑋𝑗 + 𝜏𝑖
′𝑈𝑗                                                                       (9) 

where, 𝛽0𝑖 ,  𝛽1𝑖 , 𝑋𝑗 has the usual meaning as in Eq. 6 and 𝜏𝑖: regression coefficient of ith gene for jth cell-

level auxiliary 𝑈𝑗 . The p-values for each gene are computed through LRT statistic under the GLM (Eq. 

15), which is executed through decent function implemented in DECENT R package [8]. 

BPSC 

BPSC [20] is an analytical method based on Beta-Poisson (BP) mixture model, designed to capture the 

distributional features of the scRNA-seq data, i.e., non-integer expression or low expression values. In 

BPSC, the normalized data (Supp. Document S13), such as FPKM or, CPM, are modeled by using a four 

parameters BP model given in Eq. 16. 

𝐵𝑃4(𝑌𝑖𝑗|𝛼, 𝛽, 𝜗1, 𝜗2) = 𝜗2𝑃(𝑌𝑖𝑗|𝜗1𝐵𝑒𝑡𝑎(𝛼, 𝛽))                                              (10) 

where, 𝑌𝑖𝑗: normalized value of the read counts; P(.): Poisson PMF; 𝛼, 𝛽, 𝜗1, 𝜗2 are the parameters of the 

BP model. The expected value and variance of 𝑌𝑖𝑗 is expressed as: 

𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗 = 𝜗1𝜗2
𝛼

𝛼+𝛽
                                                                                (11)           

𝑉(𝑌𝑖𝑗) = 𝜇𝑖𝑗𝜗2 + 𝜇𝑖𝑗
2 𝛽

𝛼(𝛼+𝛽+1)
                                                                     (12) 

The MLEs of the parameters in Eq. 16 are estimated using the iterative weighted least-squares algorithm 

[20]. The DE analysis of the genes was carried out under the GLM framework given in Eq. 6. Further, p-

values for the genes are computed through the LRT statistic by executing BPglm function implemented in 

the BPSC R package [20]. 

scDD 

scDD [21] method, based on Logistic- Dirichlet mixture model, is designed to model the scRNA-seq data 

under a Bayesian modeling framework. It models the excess zeros in scRNA-seq data using logistic 

regression and models the non-zero counts using the conjugate Dirichlet model of normal distributions. 



Here, the UMI counts are transformed to CPM measures through cpm function implemented in edgeR R 

package [22] followed by log-transformation. scDD uses a Bayesian modeling approach to detect DE 

genes between the two cellular groups. For this purpose, it computes an approximate Bayes factor score 

that compares the probability of DE with the probability of non-DE for each gene. The empirical gene p-

values for the DE tests are computed using a permutation method. To execute this method, we used scDD 

function implemented in scDD R package [21]. 

MAST 

MAST [23] uses a hurdle model approach for DE analysis and assumes conditional independence 

between expression rate (𝑊𝑖𝑗) and expression levels (𝑌𝑖𝑗) for each gene. It fits a logistic regression for 

𝑊𝑖𝑗 and fits a Gaussian linear model for the continuous variable (𝑌𝑖𝑗 | 𝑊𝑖𝑗 = 1), which can be summarized 

as: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑊𝑖𝑗  =  1)] = 𝑿𝒋𝜷𝒊                                                                                    (13) 

𝑃𝑟(𝑌𝑖𝑗 = 𝑦|𝑊𝑖𝑗 = 1) = 𝑁(𝑿𝒋𝜷𝒊, 𝜎𝑖
2)                                                                        (14) 

In order to improve the inference for genes with sparse expression, the model parameters are fitted using 

an empirical Bayesian framework [23]. Finally, DE testing for genes is performed across the two cellular 

groups through the LRT statistic(s). For this purpose, we executed zlm, and summary functions for hurdle 

model fitting and DE analysis respectively implemented in MAST R package [23]. 

Monocle 

Monocle [24,25] (updated as Monocle2 [25]), is a specially designed method for DE analysis, i.e. 

identifying DE genes that vary across different cell types or pseudo-times in scRNA-seq data. It uses a 

generalized additive model (GAMs) to model 𝜇𝑖𝑗 under the GLM framework, i.e., relating 𝜇𝑖𝑗 to one or 

more predictors through GAMs for each gene and is expressed as: 

𝑙𝑜𝑔𝜇𝑖𝑗 = 𝛽0𝑖 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯+ 𝑓𝑀(𝑥𝑀)                                                       (15) 



where, 𝛽0𝑖: regression co-efficient; 𝑥𝑗: predictor variable that represents group memberships of the cells; 

𝑓𝑗(. ): smoothing functions, e.g., cubic splines. Specifically, 𝑌𝑖𝑗 across the cells are modeled using a Tobit 

model (approximately); thus, Monocle’s GAM becomes: 

𝜇𝑖𝑗 = 𝑠 (𝛿𝑡(𝑏𝑥 , 𝑓𝑗)) + 𝜀                                                                                             (16) 

where, 𝛿𝑡(𝑏𝑥 , 𝑓𝑗): pseudo-time or cell type of a cell; 𝑓𝑗: cubic smoothing function (with three effective 

degrees of freedom), and 𝜀: error term, follow a standard normal distribution. Further, Monocle performs 

DE testing of genes across cell groups through LRT statistic(s) by comparing full GLM with additional 

effects to a reduced GLM based on the NB model. For this purpose, differentialGeneTest function 

implemented in monocle R package [25] was executed. 

EMDomics 

EMDomics [26] is a general-purpose non-parametric method based on Earth Mover’s Distance (EMD), 

developed for DE analysis of genomics data, i.e., testing the gene’s mean expressions difference between 

two cell groups significantly different from zero. 

Let, 𝑃𝑖 = {(𝑝𝑖1, 𝑤𝑝1), (𝑝𝑖2, 𝑤𝑝2)… , (𝑝𝑖𝑀1 , 𝑤𝑝𝑀1)} and 𝑄𝑖 = {(𝑞𝑖1, 𝑤𝑞1), (𝑞𝑖2, 𝑤𝑞2)… , (𝑞𝑖𝑀2 , 𝑤𝑝𝑀2)} be 

the signatures of ith gene across two cell groups; 𝑝𝑖𝑚 (m = 1, 2, …, M1) and 𝑞𝑖𝑛 (n = 1, 2, …, M2) are the 

centers of mth and nth histogram in two cell groups;  𝑤𝑝𝑚 and 𝑤𝑞𝑛 are weights for mth and nth cell in two 

groups. The EMD score for ith gene is computed through Eq. 27. 

𝐸𝑀𝐷𝑖 =
∑ ∑ 𝑓𝑚𝑛

𝑖 𝑑𝑚𝑛
𝑖𝑀2

𝑛=1
𝑀1
𝑚=1

∑ ∑ 𝑓𝑚𝑛
𝑖𝑀2

𝑛=1
𝑀1
𝑚=1

                                                                                          (17) 

where, 𝑑𝑚𝑛
𝑖 : Euclidean distance between mth and nth cell across two groups for ith gene and 𝑓𝑚𝑛

𝑖 : 

coefficient of flow from mth to nth cell for ith gene and determined through minimizing the cost function in 

Eq. 28. 

𝐶𝑜𝑠𝑡𝑖(𝑃, 𝑄, 𝐹) = ∑ ∑ 𝑓𝑚𝑛
𝑖 𝑑𝑚𝑛

𝑖𝑀2
𝑛=1

𝑀1
𝑚=1                                                                       (18) 



Here, the EMD test statistic reflects the overall difference between two normalized distributions (for two 

cell groups), usually assessed through statistical significance using permutation test. For this purpose, 

calculate_emd function implemented in EMDomics R package [26] was executed. 

NODES 

NODES [27] is a non-parametric method used for detecting DE genes across two cell groups through 

using normalized scRNA-seq data. Here, normalization is done through the Pseudo-Counted Quantile 

Normalization method [27]. The test statistic for ith gene (𝑑𝑖) is given in Eq. 29. 

𝑑𝑖 =
|𝑦̅𝑖1−𝑦̅𝑖2|

𝑎0+𝜎𝑖
                                                                                                              (19) 

where, 𝑎0: computed as a fixed percentile (e.g., 50th) of the standard errors {𝜎𝑖; 𝑖 = 1,2, … , 𝑁}, and 

𝑦̅𝑖1, 𝑦̅𝑖2, and 𝜎𝑖 are defined in Eq. 25. The p-values for the genes are computed through the permutation 

test through executing the NODES function implemented in NODES R package [27].  

2. Document S2: Count data models 

2.1 Negative Binomial Distribution 

Most of the popular Differential Expression (DE) analysis tools, e.g. DESeq [1], DESeq2 

[2], edgeR [3], etc., for bulk RNA-sequencing (RNA-seq) study assume the RNA-seq read 

counts to follow a Negative Binomial (NB) distribution, and subsequently, DE analysis is 

performed under Generalized Linear Model (GLM) framework. 

Let, 𝑌𝑖𝑗: random variable (rv) representing the RNA-seq read counts of ith (i = 1, 2, …, N) gene 

of jth (j = 1, 2, …, M) cell; 𝜇𝑖𝑗: mean of ith gene of jth cell in ith cell; 𝜃𝑖𝑗 (= 𝜑𝑖𝑗
−1) and 𝜑𝑖𝑗: size and 

dispersion parameters respectively of ith gene in jth cell for NB distribution. 

 Further, the Probability Mass Function (PMF) of the NB distribution is expressed as: 

𝑓𝑁𝐵(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] =
𝐺(𝑦+ 𝜃𝑖𝑗)

𝐺(𝑦+1)𝐺(𝜃𝑖𝑗)
(

𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗

(
𝜇𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝑦

  ∀ 𝑦 = 0, 1, 2, …                (20)                      



where, 𝜇𝑖𝑗 ≥ 0; 𝜃𝑖𝑗 > 0 are the parameters of NB distribution, G(.): Gamma function. Then, the 

expected value and variance of 𝑌𝑖𝑗 is shown as: 

𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗                                                                                                       (21)                                       

𝑉(𝑌𝑖𝑗) = 𝜇𝑖𝑗 +
𝜇𝑖𝑗

2

𝜃𝑖𝑗
= 𝜇𝑖𝑗 + 𝜑𝑖𝑗                                                                         (22)                              

If 𝜑𝑖𝑗 → 0 (𝑁𝑜 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)  
.
⇒𝑁𝐵(𝜇𝑖𝑗 , 𝜃𝑖𝑗)  → 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) 

2.2 Zero Inflated Negative Binomial Model 

The proportions of zeros in single cell RNA-sequencing (scRNA-seq) data are higher as 

compared to bulk RNA-seq data due to low efficiency of mRNA capture efficiency, lower 

abundance of transcriptomics in single cell, amplification bias, etc. Therefore, the application of 

NB based bulk RNA-seq DE tools leads to several technical problems including lower statistical 

power to detect DE genes in scRNA-seq studies [4,5]. So, specialized scRNA-seq DE tools, e.g. 

ZINB-Wave [6], DEsingle [7], DECENT [8], etc. are developed based on the assumption that the 

observed scRNA-seq read counts follow a Zero Inflated Negative Binomial (ZINB) Distribution.  

Let, 𝑌𝑖𝑗: rv representing the read (UMI) counts in scRNA-seq data of ith (i = 1, 2, …, N) 

gene of jth (j = 1, 2, …, M) cell; 𝜇𝑖𝑗: mean of ith gene of jth cell in ith cell; 𝜃𝑖𝑗 (= 𝜑𝑖𝑗
−1) and 𝜑𝑖𝑗: 

size and dispersion parameters respectively of ith gene in jth cell for NB distribution; 𝜋𝑖𝑗: zero 

inflation (i.e. the probability for a count to be an excess zero in a cell) parameter for ith gene of jth 

cell. 

For any 𝜋𝑖𝑗 ∈ [0, 1], 𝑌𝑖𝑗 is assumed to follow a ZINB distribution [4,7,8]. The PMF of the ZINB 

Distribution expressed as follows. 

𝑓𝑍𝐼𝑁𝐵(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] = 𝜋𝑖𝑗𝛿0(𝑦) + (1 − 𝜋𝑖𝑗)𝑓𝑁𝐵(𝑦)     ∀ 𝑦 = 0, 1, 2, …                 (23)                 



where, 𝑓𝑁𝐵(. ): PMF of NB distribution (Eq. 1); 𝛿0(. ): Dirac’s delta function. Here, 𝛿0(. ) used to 

model the excess zeros in the data, and its PMF is expressed as: 

  𝛿0(𝑌𝑖𝑗 = 𝑦) : = {
1;     𝑦 = 0
0;     𝑦 ≠ 0

                                                                                        (24)                                      

Now, the PMF of the ZINB distribution to model the read counts from scRNA-seq data is given 

in Eq. 6. 

𝑃[𝑌𝑖𝑗 = 𝑦] =

{
 

 𝜋𝑖𝑗 + (1 − 𝜋𝑖𝑗) (
𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗𝑘

                                    𝑤ℎ𝑒𝑛 𝑦 = 0

(1 − 𝜋𝑖𝑗𝑘)
𝐺(𝑦+ 𝜃𝑖𝑗)

𝐺(𝑦+1)𝐺(𝜃𝑖𝑗)
(

𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜃𝑖𝑗𝑘

(
𝜇𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝑦

;   𝑦 > 0

            (25)                 

Now, 𝑌𝑖𝑗~𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗), then the expected value and variance of 𝑌𝑖𝑗 can be obtained as 

follows: 

𝐸(𝑌𝑖𝑗) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗                                                                                               (26)                                     

 𝑉(𝑌𝑖𝑗) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗 (1 + 𝜋𝑖𝑗𝜇𝑖𝑗 +
𝜇𝑖𝑗

𝜃𝑖𝑗
)                                                                (27)                                  

If 𝜋𝑖𝑗 = 0 
.
⇒ 𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗) → 𝑁𝐵(𝜇𝑖𝑗 , 𝜃𝑖𝑗) 

If 𝜑𝑖𝑗 → 0 (𝑁𝑜 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)
.
⇒  𝑍𝐼𝑁𝐵(𝜋𝑖𝑗 , 𝜇𝑖𝑗 , 𝜃𝑖𝑗)  → 𝑍𝐼𝑃(𝜋𝑖𝑗 , 𝜇𝑖𝑗) 

2.3 Poisson Distribution 

Poisson Distribution (PD) are also extensively used for analysis of count data obtained from bulk 

RNA-seq or scRNA-seq experiments. The PMF of PD can be expressed as: 

𝑓𝑃𝐷(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] =   
𝑒
−𝜇𝑖𝑗𝜇𝑖𝑗

𝑦

𝐺(𝑦+1)
  ∀ 𝑦 = 0, 1, 2, …                  (28)                                          

𝐸(𝑌𝑖𝑗) = 𝑉𝑎𝑟(𝑌𝑖𝑗) = 𝜇𝑖𝑗                                                                       (29) 

2.4 Zero Inflated Poisson Distribution 



Poisson model has very strict assumptions, i.e., mean equals the variance, which is often violated 

in scRNA-seq data analysis. When the variance is too large because there are many 0s as well as 

a few very high values for expression counts [9]. In this case, a better solution is often the ZIPD 

model.   

The PMF of ZIPD distribution can be expressed as: 

𝑓𝑍𝐼𝑃𝐷(𝑦) = 𝑃[𝑌𝑖𝑗 = 𝑦] = 𝜋𝑖𝑗𝐼(𝑦 = 0) + (1 − 𝜋𝑖𝑗)𝑓𝑃𝐷(𝑦)         ∀ 𝑦 = 0, 1, 2, …         (30)  

= {
𝜋𝑖𝑗 + (1 − 𝜋𝑖𝑗)𝑒

𝜇𝑖𝑗                                     𝑤ℎ𝑒𝑛 𝑦 = 0

(1 − 𝜋𝑖𝑗)
𝑒
−𝜇𝑖𝑗𝜇𝑖𝑗

𝑦

𝐺(𝑦+1)
;   𝑦 > 0

                                 (31)                           

The mean and variance of ZIPD model is shown in Eq. 13 and 14, respectively. 

𝐸(𝑌) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗                                                                                                    (32) 

𝑉𝑎𝑟(𝑌) = (1 − 𝜋𝑖𝑗)𝜇𝑖𝑗(1 + 𝜋𝑖𝑗𝜇𝑖𝑗)                                                                           (33)           

2.5 Hermite Distribution 

Hermite Distribution (HD) can be used to model the counts data [10]. Further, the PMF of HD is 

given in Eq. 15. 

𝑓𝐻𝐷(𝑌𝑖𝑗 = 𝑦|𝛼𝑖𝑗  , 𝛽𝑖𝑗) = 𝑒
−(𝛼𝑖𝑗+𝛽𝑖𝑗)∑

 𝛼𝑖𝑗
𝑦−2𝑘𝛽𝑖𝑗

𝑘

𝐺(𝑦−2𝑘+1)𝐺(𝑘+1)

[
𝑦

2
]

𝑘=0  ∀ 𝑦 = 0, 1, 2, …                 (34)          

Further, the mean, variance, and dispersion index (i.e., ratio between variance and mean) of rv 

𝑌𝑖𝑗~HD (𝛼, 𝛽) is given in Eq. 16 – 18. 

𝐸(𝑌𝑖𝑗) = 𝑓(𝛼𝑖𝑗 , 𝛽𝑖𝑗) = (𝛼𝑖𝑗 + 2𝛽𝑖𝑗)                                                                           (35) 

𝑉𝑎𝑟(𝑌𝑖𝑗) = (𝛼𝑖𝑗 + 4𝛽𝑖𝑗)                                                                                              (36) 

 𝜑 = 𝑔(𝛼𝑖𝑗  , 𝛽𝑖𝑗) = 1 + 2𝛽𝑖𝑗/(𝛼𝑖𝑗 + 2𝛽𝑖𝑗)                                                                   (37)                 



The good-ness of fit of the above count data models, shown in Eq. 1, 6, 9, 12 and 15, were 

assessed through Akaike Information (AIC) and Bayesian Information (BIC) Criteria. The 

formula for AIC and BIC is expressed in Eq. 19 and 20. 

𝐴𝐼𝐶𝑚 = −2𝑙𝑜𝑔𝐿𝑚 + 2𝑃𝑚                                                                                               (38)       

𝐵𝐼𝐶𝑚 = −2𝑙𝑜𝑔𝐿𝑚 + 𝑃𝑚𝑙𝑜𝑔(𝑀)                                                                                    (39)      

where, 𝐿𝑚: Likelihood function for mth model; 𝑃𝑚: Number of parameters in mth model; 𝐴𝐼𝐶𝑚 

and 𝐵𝐼𝐶𝑚: AIC and BIC values for mth model; M: Total number of cells in the data. 

3. Document S3: Testing for zero inflation parameters for genes in scRNA-seq data 

Here, we assume that the UMI (read) counts of the genes from a scRNA-seq study are generated 

through a ZINB population model given in Eq. 4 and 6. In order to test the statistical significance 

of the zero inflation parameters of ith gene 𝜋𝑖 of the ZINB model, we adopt the following 

Generalized Likelihood Ratio Test (GLRT) procedure. Here, for the testing purpose, we define 

the following null hypothesis. 

   𝐻0: 𝜋𝑖 = 0 𝑣𝑠.  𝐻1: 𝜋𝑖 ≠ 0   

where, 𝐻0: null hypothesis; 𝐻1: alternate hypothesis. In other words, null hypothesis tells us that 

kth gene is not zero inflated, and subsequently, the scRNA-seq data structure is same as RNA-seq 

data. Further, if we fail to reject 𝐻0, then the RNA-seq DE tools can be used for DE analysis of 

scRNA-seq data with the expectation of satisfactory results. 

The above-mentioned test, 𝐻0 𝑣𝑠. 𝐻1, can be tested through GLRT and the test statistic is given 

in Eq. 21. 

 −2𝑙𝑛𝛼 = −2{𝑙(𝛀𝑖 = 𝛀̂𝑖0;  𝑌𝑖𝑗) −  𝑙(𝛀𝑖 = 𝛀̂𝑖;  𝑌𝑖𝑗)}                                                    (40)    

where, 𝛀̂𝑖0: Maximum Likelihood Estimator (MLE) of 𝛀𝑖 for ith gene under the constraint of H0 

and 𝛀̂𝑖: unconstrained MLE of 𝛀𝑖 for ith gene, 𝛀𝑖: parametric space for ith gene, i.e., 𝛀𝑖 =



{𝜇𝑖 , 𝜃𝑖 , 𝜋𝑖}. The test statistic in Eq. 31 is asymptotically distributed as Chi-square distribution 

with 1 degree of freedom under H0. 

 We applied the above procedure to Tung et al.’s scRNA-seq data to test the statistical 

significance of the zero inflation parameters of genes. The results are shown in Figure S1. It can 

be observed that most of the genes in scRNA-seq data is found to be zero inflated as their 

corresponding p-values are less than the level of significance value (Figure S1). This finding 

motivates us to develop a statistical approach for testing of differential zero inflation of genes. 

 

Figure S1. Plotting of estimated value of zero inflation parameter and their corresponding 

p-values. X-axis represents estimated values of zero inflation, (higher value of zero inflation parameter means a 

greater number of zeros found in the expression vector of that gene) and Y-axis represents the computed statistical 

significance value for the zero-inflation parameter, lesser the value represents the gene is more zero inflated.  

 

4. Document S4: Statistical testing for overdispersion parameters in scRNA-seq data 

For testing the statistical significance of the dispersion parameter of ith gene 𝜃𝑖 of the ZINB 

model, we adopt the following GLRT procedure. Here, for the testing purpose, we define the 

following null hypothesis. 

   𝐻0: 𝜃𝑖 = 0 𝑣𝑠.  𝐻1: 𝜃𝑖 ≠ 0   

where, 𝐻0: null hypothesis; 𝐻1: alternate hypothesis. In other words, null hypothesis tells us that 

ith gene is not dispersed, means the mean is same as the variance and subsequently, the scRNA-



seq count data is obtained from a Poisson model. Further, if we fail to reject 𝐻0, then we can say 

UMI counts scRNA-seq data is not overdispersed and simply fitting a Poisson model will give 

satisfactory results. 

The above-mentioned test, 𝐻0 𝑣𝑠. 𝐻1, can be tested through GLRT and the test statistic is given 

in Eq. 22. 

 −2𝑙𝑛𝛼 = −2{𝑙(𝛀𝑖 = 𝛀̂𝑖0;  𝑌𝑖𝑗) −  𝑙(𝛀𝑖 = 𝛀̂𝑖;  𝑌𝑖𝑗)}                                              (41)           

where, 𝛀̂𝑖0: MLE of 𝛀𝑖 for ith gene under the constraint of H0 and 𝛀̂𝑖: unconstrained MLE of 𝛀𝑖 

for ith gene, 𝛀𝑖: parametric space for ith gene, i.e., 𝛀𝑖 = {𝜇𝑖 , 𝜃𝑖 , 𝜋𝑖}. The test statistic in Eq. 22 is 

asymptotically distributed as Chi-square distribution with 1 degree of freedom under H0. 

We applied the above procedure to Tung et al.’s scRNA-seq data to test the statistical 

significance of the dispersion parameters of genes. The results are shown in Figure S2. It can be 

observed that all the genes in Tung’s scRNA-seq data is found to be zero inflated as their 

corresponding p-values are less than the level of significance value (at alpha = 0.0001) (Figure 

S2). This finding is well reported in literature. 

 

Figure S2. Testing for statistical significance of dispersion parameters. X-axis represents 

estimated values of overdispersion parameter through a ZINB model, and Y-axis represents the computed statistical 

significance value for the overdispersion parameter, lesser the value represents the gene is more overdispersed. 



 

5. Document S5: Application of Count Data Models to Zero-Inflated and 

Overdispersed Real Datasets 

In this section, we discuss about the fitting and suitability of different count data models such as 

NB, ZINB, PD, ZIPD and HD to the zero inflated and over dispersed datasets. These data set 

include, Embryonic Mouse Cysts count data and scRNA-seq UMI read counts data of a single 

gene, i.e. ENSG00000162585 from Tung’s data [11]. 

 4.1 Embryonic Mouse Cysts Data 

Earlier experimental studies have shown that the scRNA-seq (UMI) read count data is zero 

inflated and over dispersed [12–18]. Hence, we consider a published zero-inflated and over-

dispersed data on counts of cysts in embryonic mouse [19] to study the suitability of different 

discrete models. Here, we consider data on counts of cysts in embryonic mouse kidneys which 

had been subjected to steroids, taken from McElduff et al. [19]. This data reveals the details of 

the effect of a low protein diet in mice on kidney development in their offspring. Data on counts 

of cysts in embryonic mouse kidneys which had been subjected to steroid were featured in this 

study. Then, the count data models, such as NBD, ZINB, PD, ZIPD and HD are fitted on this 

data. Further, the parameters of these models are estimated through Maximum Likelihood 

Estimation (MLE) method. The observed frequencies and expected frequencies from different 

count models along with their estimated parameters are shown in Table S1. The goodness of fit 

of the above models to this experimental data is assessed through AIC and BIC. 

Table S1. Fitting of well-known discrete models to over-dispersed and zero-inflated cyst count 

data. 

Read Obs. 

Freq. 

Exp. Freq. 

NBD 

Exp. Freq. 

ZINBD 

Exp. Freq. 

PD 

Exp. Freq. 

ZIPD 

Exp. Freq. 

HD 

0 65 63.29 64.99 25.1 65.03 45.36 

1 14 17.56 14.01 37.32 5.1 13.75 



2 10 8.98 9.11 27.74 8.87 28.92 

3 6 5.72 6.27 13.74 10.28 8.35 

4 4 3.91 4.44 5.11 8.93 9.19 

5 2 2.79 3.2 1.52 6.21 2.53 

6 2 2.04 2.33 0.38 3.6 1.94 

7 2 1.52 1.71 0.08 1.79 0.51 

8 1 1.15 1.26 0.01 0.78 0.31 

9 1 0.88 0.93 0 0.3 0.08 

10 1 0.68 0.69 0 0.1 0.04 

11 2 0.52 0.52 0 0.03 0.01 

12 1 0.41 0.38 0 0.01 0 

Total 111 110.95 110.84 111 111.03 110.99 

Parameters 

(MLE) 

 

𝜇=1.49 

𝜃=0.31 

 

 

𝜇 = 2.285 

𝜃 = 0.698 

𝜋 = 0.349 

 

𝜇 = 1.486 

 

 

 

𝜇 = 3.476 

𝜋 = 0.572 

 

 

𝜇 = 1.487 

𝜑 = 1.796 

 

 

#Parameters  2 3 1 2 2 

Likelihood   -175.22 -172.8 -263.25 -191.9 -202.84 

AIC  354.44 351.60 528.50 387.80 409.68 

BIC  354.53 351.74 528.55 387.89 409.77 

#Parameters: number of parameters; 𝜇: Mean; 𝜃: size; 𝜋: zero-inflation probability; 𝜑: dispersion index (ratio 

of variance to mean); AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; Obs. Freq: 

Observed Frequency; Exp. Freq. NBD: computed expected frequency through NB model; Exp. Freq. ZINB: 

computed expected frequency through ZINB model; Exp. Freq. PD: computed expected frequency through 

Poisson model; Exp. Freq. ZIPD: computed expected frequency through ZIPD model; Exp. Freq. HD: 

computed expected frequency through HD model 

It is observed that the expected frequencies computed from ZINB are closer to their observed 

values as compared to other models. Further, the AIC and BIC values for ZINB is lowest 

followed by NB model for the given zero inflated and over dispersed cyst count data as 

compared to PD, ZIPD and HD (Table S1). This indicates, for fitting over-dispersed and zero 

inflated datasets like scRNA-seq data, ZINB model provides a better fit as compared to other 

count models, i.e., NB, PD, ZIPD and HD (Tables S1). Moreover, we validate the above claim 

by using another overdispersed and zero-inflated dataset from scRNA-seq study. 

4.2 Application to scRNA-seq read counts data 

Here, we fitted the considered count data models, such as NB, ZINB, PD, ZIPD and HD to the 

scRNA-seq read counts of ENSG00000162585 gene taken from Tung’s data (available 



at https://github.com/jdblischak/singleCellSeq). The observed and expected frequencies 

computed through different count models for each read sequences along with estimated values of 

the parameters are shown in Table S2. 

Table S2. Fitting of well-known discrete models to over-dispersed and zero-inflated scRNA-seq 

read count data. 

UMI 

Reads 

Obs. 

Freq. 

Pred. Freq. 

NB 

Pred. Freq. 

PD 

Pred. Freq. 

HD 

Pred. Freq. 

ZINB 

Pred. Freq. 

ZIP 

0 115 108.05 0.09 4.82 126.82 115 

1 84 57.92 0.78 3.34 56.96 0.06 

2 45 42.58 3.37 20.33 39.79 0.36 

3 33 34.13 9.73 13.54 31.11 1.34 

4 31 28.48 21.03 42.8 25.61 3.73 

5 18 24.34 36.39 27.48 21.73 8.32 

6 12 21.13 52.46 59.94 18.79 15.44 

7 10 18.53 64.83 37.17 16.48 24.56 

8 7 16.39 70.11 62.84 14.6 34.19 

9 9 14.59 67.38 37.71 13.03 42.31 

10 4 13.05 58.29 52.62 11.7 47.12 

11 6 11.72 45.84 30.59 10.56 47.71 

12 12 10.56 33.04 36.67 9.58 44.28 

13 4 9.54 21.99 20.68 8.71 37.94 

14 3 8.64 13.59 21.87 7.95 30.18 

15 5 7.84 7.84 11.98 7.27 22.41 

16 8 7.13 4.24 11.39 6.67 15.6 

17 6 6.5 2.16 6.07 6.13 10.22 

18 4 5.93 1.04 5.27 5.64 6.32 

19 7 5.41 0.47 2.74 5.2 3.71 

20 5 4.95 0.2 2.19 4.8 2.06 

21 5 4.53 0.08 1.11 4.43 1.09 

22 4 4.15 0.03 0.83 4.1 0.55 

23 5 3.8 0.01 0.41 3.8 0.27 

24 6 3.49 0 0.29 3.53 0.12 

25 4 3.21 0 0.14 3.27 0.06 

26 7 2.95 0 0.09 3.04 0.02 

27 5 2.71 0 0.04 2.83 0.01 

28 5 2.49 0 0.03 2.63 0 

29 3 2.29 0 0.01 2.45 0 

30 2 2.11 0 0.01 2.28 0 

31 2 1.95 0 0 2.12 0 

https://github.com/jdblischak/singleCellSeq


33 5 1.65 0 0 1.85 0 

34 5 1.53 0 0 1.72 0 

35 7 1.41 0 0 1.61 0 

36 3 1.3 0 0 1.5 0 

39 4 1.03 0 0 1.23 0 

40 2 0.95 0 0 1.15 0 

41 1 0.88 0 0 1.08 0 

42 3 0.81 0 0 1.01 0 

43 1 0.75 0 0 0.94 0 

46 3 0.59 0 0 0.78 0 

47 1 0.55 0 0 0.73 0 

49 2 0.47 0 0 0.64 0 

50 2 0.44 0 0 0.6 0 

Paramete

rs 

(MLE) 

 
µ=8.14 

𝜃=0.574 

µ=8.65 µ=8.651 

𝜑=1.92 

µ=8.652 

𝜃=0.47377 

𝜋=1.173e-05 

µ=11.1373 

𝜋=0.224 

Parameters: parameters estimated through MLE; 𝜇: Mean; 𝜃: size; 𝜋: zero-inflation probability; 𝜑: dispersion 

index (ratio of variance to mean); Obs. Freq: Observed Frequency; Pred. Freq. NBD: computed predicted 

frequency through NB model; Pred. Freq. ZINB: computed predicted frequency through ZINB model; Pred. 

Freq. PD: computed predicted frequency through Poisson model; Pred. Freq. ZIPD: computed predicted 

frequency through ZIPD model; Pred. Freq. HD: computed predicted frequency through HD model 

It is observed that the expected frequencies computed from ZINB model are closer to their 

observed counter parts as compared to other models, such as NB, PD, ZIPD and HD (Table S2). 

Further, the fitting of the discrete models in terms of density plots are shown in Figure S3. This 

indicates, for fitting overdispersed and zero inflated scRNA-seq data, ZINB model provides a 

better fit to the observed scRNA-seq data as compared to other count models (Tables S2, Figure 

S3). Therefore, from the above applications of discrete models to zero-inflated and overdispersed 

scRNA-seq data, we can conclude that the ZINB model provides better fit to the data and better 

estimates of the parameters as compared to NB model.  In other words, NB model is extensively 

used for modeling and fitting of bulk RNA-seq count data. But it performed poor when it is used 

for fitting the scRNA-seq data, which is simultaneously zero inflated and overdispersed (Figure 

S3). It can be observed that, for fitting overdispersed and zero inflated datasets like scRNA-seq 

data, ZINB model provides a better estimate of the mean and dispersion parameters as compared 



to other count data models (Table S2, Figure S3). More specifically, we test the ability of NB, 

and ZINB models to estimate the mean and dispersion parameters for scRNA-seq count data 

through simulation, which is described in the following section. 
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Table S3. Availability of the DE analytic approaches for scRNA-seq data analysis. 

SN. Methods Vers. Platform Availability Ref. 

1 Seurat 4.0.4 R https://cloud.r-project.org/package=Seurat  [80], 

https://cloud.r-project.org/​package=Seurat


[81] 

2 SCDE 1.99.1 R,* http://pklab.med.harvard.edu/scde/  [50] 

3 scDD 1.16.0 R https://www.bioconductor.org/packages/release/bioc/html/scDD.ht

ml 

[58] 

4 D3E _ Python,* https://github.com/hemberg-lab/D3E  

https://www.sanger.ac.uk/sanger/GeneRegulation_D3E  

[51] 

5 BPSC 0.99.2 R https://github.com/nghiavtr/BPSC [12] 

6 MAST 1.19.0 R https://github.com/RGLab/MAST [53] 

7 Monocle2 2.20.0 R www.bioconductor.org/packages/release/bioc/html/monocle.html [44], 

[45] 

8 DEsingle 1.12.0 R https://www.bioconductor.org/packages/release/bioc/html/DEsingle

.html 

[57] 

9 DECENT 1.1.0 R https://github.com/cz-ye/DECENT [24] 

10 DESCEND 1.0.0 R https://github.com/jingshuw/descend  [28] 

11 EMDomics 2.22.0 R https://www.bioconductor.org/packages/release/bioc/html/EMDomi

cs.html 

[65] 

12 Sincera 0.99.0 R* https://research.cchmc.org/pbge/sincera.html  

https://github.com/xu-lab/SINCERA  

[66] 

13 ZIAQ 3.4.0 R https://github.com/gefeizhang/ZIAQ  [42] 

14 sigEMD 0.21.1 R https://github.com/NabaviLab/SigEMD  [93] 

15 TASC  Python https://github.com/scrna-seq/TASC  [26] 

16 ZINB-Wave 1.14.2 R https://bioconductor.org/packages/zinbwave  [32] 

17 SwarnSeq 0.1.0 R https://github.com/sam-uofl/SwarnSeq  [13] 

18 NODES 0.0.0.

9010 

R https://goo.gl/Ndx07M [60] 

19 BASiCS 2.5.7 R https://github.com/catavallejos/BASiCS  [25] 

20 NBID 0.1.2 R https://bitbucket.org/Wenan/nbid  [31] 

21 tradeSeq 1.6.0 R http://www.bioconductor.org/packages/release/bioc/html/tradeSeq.

html 

https://github.com/statOmics/tradeSeq 

[46] 

22 SC2P 1.0.2 R https://github.com/haowulab/SC2P  [52] 

23 RandomHur

dle 

NA … … [94] 

24 NYMP NA Python, 

R 

https://github.com/pachterlab/NYMP_2018  [59] 

26 scDEA 1.0.0 R https://github.com/Zhangxfccnu/scDEA  [83] 

27 IDEAS 0.0.90

00 

R https://github.com/Sun-lab/ideas  [100] 

28 SIMCD 1.0.0 R https://github.com/namini94/SimCD  [95] 

29 zingeR 0.1.0 R https://github.com/statOmics/zingeR  [33], 

[34] 

30 ROSeq 1.4.0 R http://www.bioconductor.org/packages/release/bioc/html/ROSeq.ht

ml  

https://github.com/krishan57gupta/ROSeq  

[61] 

31 DTWscore 1.0 R https://github.com/xiaoxiaoxier/DTWscore  [96] 

32 SAMstrt 0.99.0 R https://github.com/shka/R-SAMstrt  [97] 

33 t-test 4.3.0 R https://stat.ethz.ch/R-manual/R- [10] 
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https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html


devel/library/stats/html/00Index.html  

34 Wilcox 4.3.0 R https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/00Index.html  

[10] 

35 Tweedievers

e 

1.0 R https://github.com/himelmallick/Tweedieverse  

 

[35] 

36 scMMST NA R www.frontiersin.org/articles/10.3389/fgene.2021.616686/full#suppl

ementary-material 

[98] 

37 TPMM NA R, C++ https://github.com/shilab2017/two_part_mixed_model  [99] 
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