Supporting information

Systems Pharmacological Approach to Investigate the Mechanism of

Ohwia caudata for application to Alzheimer's disease

Yi-wei Sun^{1,2}, Yue Wang ^{1,2} and Da-li Meng^{1,2,*}

¹Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical

University, Shenyang 110016, PR China

² School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China

Corresponding Authors:

*E-mail: mengdl@163.com

Figure 1. The HRMS Data of compound 1

Figure 2. The ¹H NMR Spectrum of Compound 1 in DMSO-*d*₆ (600 Hz)

Figure 3. The ¹³C NMR Spectrum of Compound 1 in DMSO- $d_6(150 \text{ Hz})$

Figure 4. The HMBC Spectrum of Compound 1 in DMSO- $d_6(600 \text{ Hz})$

		Qualitativ	ve Analysis Re	eport
Data Filenam Sample Type	10	AL.d Sample	Sample Name Position	A1 P1-A1
Instrument N Acq Method IRM Calibratio Comment	iame on Status	ZHENG100-1000.m	Acquired Time DA Method	3/18/2018 12:05:28 PM 20170311.m
Sample Group		Inf	fo.	
Version	9 6200 Q-TO	F 8.05.01 (85125.2)		
User Spectra Fragmentor 200	V 6200 Q-TO	Collision Energy	Ionization Mode ESI	
User Spectra Fragmentor x10.4 +ESI S	V 6200 Q-TO Voltage	Collision Energy 0 in) Frag=200.0V A1.d S	Ionization Mode ESI ubtract	
User Spectra Fragmentor 200 x10 4 4	V 6200 Q-TOI Voltage	Collision Energy 0 1in) Frag=200.0V A1.d S 375.3	Ionization Mode ESI lubtract 2536	

Figure 5. The HRMS Data of compound 2

Figure 6. The ¹H NMR Spectrum of Compound **2** in DMSO- d_6 (600 Hz)

Figure 7. The ¹³C NMR Spectrum of Compound **2** in DMSO- $d_6(150 \text{ Hz})$

Figure 8. The HMBC Spectrum of Compound 2 in DMSO- $d_6(600 \text{ Hz})$