Supplementary materials for

¹³C CPMAS NMR as a tool for full structural description of 2-phenyl substituted imidazoles that overcomes the effects of fast tautomerization

Nikola Burdzhiev, Anife Ahmedova, Boris Borrisov and Robert Graf

Table of Contents

Spectra of (2-phenyl-1H-imidazol-4-yl)methanol (1a)	2
Spectra of (2-(4-methoxyphenyl)-1H-imidazol-4-yl)methanol (1b)	5
Spectra of 4-(4-(hydroxymethyl)-1H-imidazol-2-yl)benzonitrile (1c)	9
Spectra of 2-phenyl-1H-imidazole-4(5)-carbaldehyde (2a)	12
Spectra of 2-(4-methoxyphenyl)-1H-imidazole-4-carbaldehyde (2b)	15
Spectra of 4-(4-formyl-1H-imidazol-2-yl)benzonitrile (2c)	20
Spectra of 2-(4-hydroxyphenyl)-1H-imidazole-4-carbaldehyde (2d)	25
Spectra of 2-methyl-1H-imidazole-4-carbaldehyde	28

Spectra of (2-phenyl-1H-imidazol-4-yl)methanol (1a).

Figure 1. IR spectrum of 1a in KBr pellets.

Figure 2. ¹H NMR (DMSO-*d*₆) of **1a** at 298 K.

Figure 4. ¹H-MAS NMR (solid state 500MHz, 15kHz) of 1a.

Figure 5. ¹³C CP-MAS (solid state 125MHz, 15kHz) of 1a.

Figure 6. ¹³C CPPI spectrum of **1a**; null signal for CH, negative signal for CH₂, and positive signal for C and CH₃.

Spectra of (2-(4-methoxyphenyl)-1H-imidazol-4-yl)methanol (1b)

Figure 7. IR spectrum of 1b in KBr pellets.

Figure 8. ¹H NMR (DMSO-d₆) of 1b.

Figure 10. ¹H-MAS NMR (solid state 500MHz, 15kHz) of 1b.

Figure 12. ¹³C CP-MAS (solid state 125MHz, 15kHz) of **1b**; weak shoulders on the signals at 117.17 and 130.04 ppm and broadening of the signals at 109.55 and 146.88.

Figure 13. ¹³C CP-MAS (solid state 212.5 MHz, 25kHz) of 1b.

Figure 14. ¹³C CPPI spectrum (125 MHz, 10 kHz) of **1b**; null signal for CH, negative signal for CH₂, and positive signal for C and CH₃.

Spectra of 4-(4-(hydroxymethyl)-1H-imidazol-2-yl)benzonitrile (1c)

Figure 15. IR spectrum of 1c in KBr pellets.

Figure 16. ¹H NMR (DMSO-*d*₆) of **1c** at 298 K.

Figure 17. Temperature dependent ¹H NMR (DMSO-*d*₆) of 1c.

Figure 18. ¹³C NMR (DMSO-*d*₆) of **1c** at 298 K.

Figure 20. ¹³C CP-MAS (solid state 125MHz, 15kHz) of 1c.

Spectra of 2-phenyl-1H-imidazole-4(5)-carbaldehyde (2a)

Figure 21. IR spectrum of 2a in KBr pellets.

Figure 22. ¹H NMR (DMSO-*d*₆) of 2a at 298 K.

Figure 24. ¹H MAS NMR (solid state 500MHz, 15kHz) of 2a.

Figure 25. ¹³C CP-MAS NMR (solid state 500MHz, 15kHz) of 2a.

Figure 26. ¹³C CPPI spectrum (125 MHz, 10 kHz) of **2a**; null signal for CH, negative signal for CH₂, and positive signal for C and CH₃.

Spectra of 2-(4-methoxyphenyl)-1H-imidazole-4-carbaldehyde (2b)

Figure 27. IR spectrum of **2b** in KBr pellets.

Figure 28. NMR (DMSO-*d*₆) of **2b** at 298 K.

Figure 29. ¹³C NMR (DMSO-*d*₆) of 2b at 298 K (125MHz; NS 1024).

Figure 30. ¹H MAS NMR (solid state 850 MHz, 25 kHz) of 2b.

Figure 31. ¹³C CP-MAS NMR (125 MHz, 15 kHz) of 2b.

Figure 32. ¹³C CP-MAS NMR (212.5 MHz, 25 kHz) of 2b.

Figure 33. ¹H-¹³C CP-MAS correlation spectrum (212.5 MHz, 25 kHz) of compound **2b**. Right block shows magnified view of the selected area in the correlation spectrum.

Figure 34. Double quantum-single quantum correlation spectrum of **2b** recorded at 25 kHz MAS, and 1 rotor periods double-quantum recoupling using the BABA-xy16 pulse sequence.

Figure 35. Double quantum-single quantum correlation spectrum of **2b** recorded at 25 kHz MAS, and 4 rotor periods double-quantum recoupling using the BABA-xy16 pulse sequence.

Spectra of 4-(4-formyl-1H-imidazol-2-yl)benzonitrile (2c)

Figure 36. IR spectrum of 2c in KBr pellets.

Figure 37. ¹H NMR (DMSO-*d*₆) of **2c** at 298 K.

Figure 39. ¹³C NMR (DMSO-*d*₆) of **2c** at two different temperatures (25 and 80 °C) and different scan number (NS) 256 and 2048.

Figure 41. ¹³C CP-MAS NMR (125 MHz, 10kHz) of 2c.

Figure 42. ¹H-¹³C CP-MAS correlation spectrum (212.5 MHz, 25 kHz) of compound **2c**. Right block shows magnified view of the selected area in the correlation spectrum.

Figure 43. Double quantum-single quantum correlation spectrum of **2c** recorded at 25 kHz MAS, and 1 rotor periods double-quantum recoupling using the BABA-xy16 pulse sequence.

Figure 44. Double quantum-single quantum correlation spectrum of **2c** recorded at 25 kHz MAS, and 2 rotor periods double-quantum recoupling using the BABA-xy16 pulse sequence.

Spectra of 2-(4-hydroxyphenyl)-1H-imidazole-4-carbaldehyde (2d)

Figure 45. IR spectrum of 2d in KBr pellets.

Figure 46. 1 H NMR (DMSO- d_{δ}) of 2d at 298 K (500 MHz, 25mM).

Figure 47. Concentration dependent ¹H NMR (DMSO- d_6) spectra of **2d** at 298 K (from bottom to top 13mM, 25mM and > 50 mM).

Figure 48. Temperature dependent ¹H NMR (DMSO-*d*₆) spectra of 2d with concentration of 25mM.

Spectra of 2-methyl-1H-imidazole-4-carbaldehyde

Figure 52. ¹H NMR (DMSO-*d*₆) at 298 K (500 MHz).

Figure 54. CP-MAS NMR (125 MHz, 15kHz).

Figure 55. ¹³C CPPI spectrum (125 MHz, 150 kHz); null signal for CH, negative signal for CH₂, and positive signal for C and CH₃.

Figure 56. Microscope image of the different crystalline phases of 2c .