Supplementary material

for

Multistep Synthesis and *In Vitro* Anticancer Evaluation of 2-Pyrazolyl-Estradiol Derivatives, Pyrazolocoumarin-Estradiol Hybrids and Analogous Compounds

Barnabás Molnár¹, Mohana Krishna Gopisetty², Dóra Izabella Adamecz², Mónika Kiricsi²

and Éva Frank $^{\rm 1,\ast}$

- ¹ Department of Organic Chemistry, Doctoral School of Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- ² Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary

*Corresponding author. E-mail address: frank@chem.u-szeged.hu

Table of Contents

¹ H NMR and ¹³ C NMR spectra of the synthesized compounds	S2-S28
Mean±SD values of primary growth inhibitory screen (given as cell viability) used to construct the heat map (Table S1)	S29
Dose response curves used to evaluate IC50 concentrations of selected compounds. (Figure S1)	S30

13C - 2020-01-18T04:57:32 - CDC3

100 90 f1 (ppm)

90 80 f1 (ppm)

Table S1: Mean±SD values of primary growth						
inhibitory screen (given as cell viability) used to construct the heat map						
	MRC-5	MCF-7	HeLa	PC-3	DU145	
Control	99.9±7.2	100±3.6	100.0±3.1	99.9±7.6	100.0±13.9	
4	≥100±6.6	92.7±2.2	90.0±4.3	88.5±6.5	94.2±8.6	
5	≥100±7	87.5±	99.6±3.5	79.0±3.8	100.6±6.5	
7a	≥100±5.7	98.6±5.2	102.7±2.7	87.8±7.1	108.7±9.1	
7b	100.4±5.1	≥100±4.3	100.1±2.1	98.2±6.5	98.7±15.6	
7c	78.9±4.3	57.4±10.6	94.1±1.9	36.0±4.5	70.4±3.6	
8a	99.9±3.3	100.9±4.8	100.4±1.6	54.9±3.0	108.8±4.1	

92.2±8.5

83.1±6.2

73.8±0.6

68.0±0.4

75.7±1.7

83.2±2.0

68.3±2.2

72.4±4.2

75.4±1.1

70.1±4.5

77.9±1.5

53.8±8.3

53.7±3.3

≥100±3.9

≥100±4.0

≥100±6.5

≥100±8.7

≥100±6.6

≥100±8.7

≥100±2.4

≥100±8.3

67.8±3.8

 94.8 ± 4.0

82.0±2.2

86.2±2.4

94.1±4.2

63.6±17.8

88.0±5.6

81.6±6.8

59.7±3.2

74.3±2.3

87.1±3.8

≥100±2.2

71.0±20.9

≥100±3.0

61.9±2.8

91.5±12.9

99.6±7.7

90.9±3.0

95.4±1.3

84.1±5.2

79.1±7.8

≥100±10.2

≥100±5.0

≥100±5.8

≥100±4.5

≥100±0.9

≥100±15.8

≥100±6.8

77.3±6.3

98.2±5.4

97.5±10.1

127.1±4.9

≥100±6.7

≥100±6.4

≥100±16.8

80.3±10.8

87.0±18.2

45.3±2.5

≥100±4.3

21.6±0.5

 100.6 ± 6.3

≥100.6±10.8

8a 8b

8c

9a

9b

9c

10a

10b

10c

11a

11b

11c

15

17a

17b

17c

18a

18b

18c

19a

19b

19c

≥100±2.4

≥100±3.3

≥100±8.1

≥100±4.2

89.5±8.7

93.6±1.7

96.9±3.8

96.4±10.1

≥100±8.2

≥100±2.2

≥100±8.4

≥100±3.7

≥100±7.3

≥100±14.5

≥100±4.0

≥100±0.1

≥100±2.6

≥100±2.3

≥100±3.0

≥100±0

≥100±2.5

≥100±8.2

≥100±5.3

≥100±2.4

 $\geq\!\!100{\pm}0.8$

91.1±3.1

73.5±7.2

87.6±0.7

63.2±2.2

93.4±3.7

 80.4 ± 2.9

≥100±0.7

≥100±1.9

≥100±2.3

93.2±6.0

77.5±4.6

 98.0 ± 7.1

≥100±5.3

 $\geq 100 \pm 4.7$

≥100±3.9

≥100±4.8

≥100±3.8

Log (concentration)

Figure S1: Dose response curves used to evaluate IC_{50} concentrations of selected compounds. Xaxis represents nM concentrations of the test compound and μM concentration of cisplatin on logarithmic scale and Y-axis represents cell viability normalized to untreated control.