Supporting Information

For

(*E*)-1-(Furan-2-yl)-(substituted phenyl)prop-2-en-1 one derivatives as tyrosinase inhibitors and melanogenesis inhibition: An *in vitro* and *in silico* study

Hee Jin Jung¹, Sang Gyun Noh¹, Il Young Ryu¹, Chaeun Park¹, Ji Young Lee¹, Pusoon Chun², Hyung Ryong Moon^{1,*}, Hae Young Chung^{1,*}

¹College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea. ²College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea

Contents

Fig. S1. ¹ H NMR spectrum of compound 1	4
Fig. S2. ¹³ C NMR spectrum of compound 1	4
Fig. S3. ESI-MS spectrum of compound 1	5
Fig. S4. ¹ H NMR spectrum of compound 2	6
Fig. S5. ¹³ C NMR spectrum of compound 2	6
Fig. S6. ESI-MS spectrum of compound 2	7
Fig. S7. ¹ H NMR spectrum of compound 3	8
Fig. S8. ¹³ C NMR spectrum of compound 3	8
Fig. S9. ESI-MS spectrum of compound 3	9
Fig. S10. ¹ H NMR spectrum of compound 4	10
Fig. S11. ¹³ C NMR spectrum of compound 4	10
Fig. S12. ESI-MS spectrum of compound 4	11
Fig. S13. ¹ H NMR spectrum of compound 5	12
Fig. S14. ¹³ C NMR spectrum of compound 5	12
Fig. S15. ESI-MS spectrum of compound 5	13
Fig. S16. ¹ H NMR spectrum of compound 6	14
Fig. S17. ¹³ C NMR spectrum of compound 6	14
Fig. S18. ESI-MS spectrum of compound 6	15
Fig. S19. ¹ H NMR spectrum of compound 7	16
Fig. S20. ¹³ C NMR spectrum of compound 7	16
Fig. S21. ESI-MS spectrum of compound 7	17
Fig. S22. ¹ H NMR spectrum of compound 8	18
Fig. S23. ¹³ C NMR spectrum of compound 8	18
Fig. S24. ESI-MS spectrum of compound 8	19

Fig. S25	. ¹ H NMR spectrum of compound 9	20
Fig. S26	. ¹³ C NMR spectrum of compound 9	20

PUY-288 Puise Sequences: 32pui Sequences: 32pui New 2016 New 2016 Puise 2017 Puise 2017	1 586 75496 MHz 6 580		¹ H NMR (400	MHz, DMSO-d ₆)
			l	

Fig. S1. ¹H-NMR spectrum of **1**.

Fig. S2. ¹³C-NMR spectrum of **1**.

HRMS (ESI+) $m/z C_{13}H_{11}O_3$ (M+H)⁺ calcd 215.0703, obsd 215.0701.

Fig. S4. ¹H-NMR spectrum of **2**.

Fig. S5. ¹³C-NMR spectrum of **2**.

HRMS (ESI+) $m/z C_{13}H_{11}O_4 (M+H)^+$ calcd 231.0652, obsd 231.0643.

HRMS (ESI+) $m/z C_{14}H_{13}O_4$ (M+H)⁺ calcd 245.0808, obsd 245.0806.

Fig. S11. ¹³C-NMR spectrum of **4**.

HRMS (ESI+) $m/z C_{14}H_{13}O_4 (M+H)^+$ calcd 245.0808, obsd 245.0802.

HRMS (ESI+) $m/z C_{13}H_{10}BrO_3$ (M+H)⁺ calcd 292.9808, obsd 292.9802, $C_{13}H_{10}BrO_3$ (M+2+H)⁺ calcd 294.9789, obsd 294.9787.

Fig. S18. ESI-MS spectrum of 6.

HRMS (ESI+) $m/z C_{13}H_9Br_2O_3 (M+H)^+$ calcd 370.8913, obsd 370.8900, $C_{13}H_9Br_2O_3 (M+2+H)^+$ calcd 372.8893, obsd 372.8880, $C_{13}H_9Br_2O_3 (M+4+H)^+$ calcd 374.8874, obsd 374.8861.

Fig. S21. ESI-MS spectrum of 7.

Fig. S22. ¹H-NMR spectrum of **8**.

Fig. S23. ¹³C-NMR spectrum of 8.

Fig. S25. ¹H-NMR spectrum of **9**.

Fig. S26. ¹³C-NMR spectrum of **9**.