Supplementary Information for

"Surfactant-free Synthesis of Three-dimensional Perovskite Titania-based Micron-scale

Motifs Used as Catalytic Supports for the Methanol Oxidation Reaction"

Nathaniel Hurley,¹ Luyao Li,¹ Christopher Koenigsmann,² and Stanislaus S. Wong^{1,*}

Email: stanislaus.wong@stonybrook.edu; sswong@bnl.gov

¹Department of Chemistry, State University of New York at Stony Brook,

Stony Brook, NY 11794-3400

²Department of Chemistry, Fordham University,

Bronx, NY 10458

*To whom correspondence should be addressed.

Figure S1. SEM images of CTO, annealed at various temperatures, including (A) 600°C, (B)

700°C, (C) 800°C, (D) 900°C, (E) 1000°C, and (F) 1100°C, respectively.

Figure S2. XRD patterns of a CTO powder sample calcined at (A) 1100°C; (B) 1000°C; (C) 800°C; and (D) 600°C, respectively, as well as of the (E) CTO intermediate. The data on all samples were acquired without an acid wash.

Figure S3. SEM images of TiO₂ rod-like impurities and "sea urchin" motifs within isolated (A) CTO and (B) STO samples, respectively, prior to the 'nitric acid' wash.

Figure S4. XRD patterns of a BTO powder sample, calcined at (A) 1100°C, (B) 1000°C, (C) 900°C, and (D) 800°C, respectively, as well as of the (E) BTO intermediate. The data on all samples were obtained without an acid wash. Triangles indicate the presence of BaTi₅O₁₁ peaks.

Figure S5. SEM images of BTO, annealed at various temperatures, including (A) 600°C, (B) 700°C, (C) 800°C, (D) 900°C, (E) 1000°C, and (F) 1100°C, respectively.

Figure S6. SEM images of STO annealed at various temperatures, including (A) 600°C, (B) 700°C, (C) 800°C, (D) 900°C, (E) 1000°C, and (F) 1100°C, respectively.

Figure S7. XRD patterns of annealed, hydrothermal-derived, and ultra-small STO samples as compared with the standard STO reference pattern.

Figure S8. XRD patterns of the TiO₂ 3D precursor templates along with the commercial TiO₂ nanoparticles, with both samples compared with respect to the anatase TiO₂ database standard.

Figure S9. TEM images of Pt particles deposited onto the various different perovskite and standard samples that were analyzed. These systems include (A) Pt/CTO, (B) Pt/STO, (C) Pt/BTO, (D) Pt/STO hydrothermal, (E) Pt/STO ultra-small, (F) Pt/TiO₂ commercial, and (G) Pt/TiO₂ precursor templates, respectively.

Figure S10. CV curves for reference standards of (A) Pt/STO hydrothermal, (B) Pt/STO ultrasmall, (C) Pt/TiO₂ commercial, and (D) Pt/TiO₂ template systems, respectively

Material System	Specific activity (mA / cm ²)		Mass Activity (mA / mg)		Specific Surface Area
	0.7 V	0.8 V	0.7 V	0.8 V	(m ² /g)
Pt / CTO -	0.033	0.151	1.920	8.780	5.80
annealed					
Pt / STO -	0.030	0.138	1.150	5.300	3.85
annealed					
Pt / STO -	0.016	0.030	0.103	0.198	0.65
hydrothermal					
Pt / STO	0.018	0.032	0.056	0.099	0.31
(ultra-small)					
Pt / BTO -	0.021	0.114	1.200	6.420	5.70
annealed					
Pt / TiO ₂ templates	0.008	0.012	0.024	0.035	0.28
Pt / TiO ₂	0.033	0.104	0.197	0.624	0.60
(commercial)					

Table S1. MOR data obtained for all samples, including specific and mass activity readings, in

 addition to specific surface area values.

Figure S11. Chronoamperometry measurements collected at 0.8 V of reference standard systems associated with Pt/STO hydrothermal (orange), Pt/STO ultra-small (teal), Pt/TiO₂ commercial (black), and Pt/TiO₂ templates (purple), respectively, obtained within an Arsaturated 0.1 M perchloric acid solution + 0.5 M MeOH medium for 3600 sec.