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Instrumentation 

1H nuclear magnetic resonance (NMR) spectra were obtained using a Bruker Avance III (400 MHz) 

apparatus. The data are given as chemical shifts (δ) in ppm against trimethylsilane (in parenthesis: 

multiplicity, integration, coupling constant). Mass spectra were obtained on a Waters ZQ 2000 mass 

spectrometer (electron spray ionization). Infrared (IR) spectra are measured using a Vertex 70 Bruker 

spectrophotometer. 

Differential scanning calorimetry (DSC) measurements were carried out using a Bruker Reflex II 

thermosystem. Thermogravimetric analysis (TGA) was performed on a TGAQ50 aparatus. The TGA 

and DSC curves were recorded in a nitrogen atmosphere at a heating rate of 10o C/min. 

  



Fabrication of OLED devices 

The electroluminescent OLED devices were fabricated on glass substrates. The electro-active 

organic layers were sandwiched between a bottom indium tin oxide (ITO) anode and a top metal cathode, 

and had the structure: ITO/HTLs(40-80 nm)/Alq3(100nm)/LiF(1nm)/Al(100nm). The ITO-coated 

substrates were carefully cleaned and treated with UV/ozone right before deposition of the organic layers. 

Hole transporting (HTL) layers were prepared by spin-coating of 40, 60 or 80 nm layer of the 

corresponding material 4-6 onto the substrates from chloroform solutions (3-10 mg/ml). Evaporation of 

the emitting/electron-transporting tris(quinolin-8-olato)aluminium (Alq3) layer (100 nm) and a LiF/Al 

electrode (1/100 nm) was done at a pressure of 4×10-4 Pa in vacuum evaporation equipment. The 

luminance of the fabricated devices was measured using a Minolta CS-100 luminance-meter. A Keithley 

2400 electrometer was used to measure the current-voltage characteristics of the devices. All the 

measurements were performed at ambient conditions in air. For comparison of the properties an 

analogous device with 40 nm thick PEDOT:PSS (Baytron P 4083) hole injecting-transporting layer (HI-

TL) was prepared and had the structure : ITO/ PEDOT:PSS (40nm)/HTLs(40-80 

nm)/Alq3(100nm)/LiF(1nm)/Al(100nm). Thickness of the layers was measured by using Alpha-Step D-

500 mechanical profilometer. 
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Figure S1. Current density–voltage (I–V) curves of the devices using HTLs of 4(a), 5(b) and 6(c). 
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Figure S2. Luminance – voltage (L–V) curves of the devices using HTLs of 4(a), 5(b) and 6(c). 
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Figure S3. Current efficiency – luminance (CE–L) curves of the devices using HTLs of 4(a), 5(b) and 

6(c). 



 

Figure S4. Thermo-gravimetric analysis curve of the material 5. 

 

                                                 

Figure S5. Thermo-gravimetric analysis curve of the material 6. 
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Figure S6. DSC curves of material 6. 

 

 

 

Figure S7. Mass spectrum of material 4. 



 

Figure S8. Mass spectrum of material 5. 

 

 

Figure S9. Mass spectrum of material 6. 

 

 



 
Figure S10. FT-IR spectrum of material 4. 
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Figure S11. FT-IR spectrum of material 5. 
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Figure S12. FT-IR spectrum of material 6. 
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Figure S13. 1H NMR of material 4. 
 
 



 
Figure S14. 1H NMR of material 5. 

 



 
Figure S15. 1H NMR of material 5. 

 
  



 
 

 
Figure S16. 13C NMR of material 4. 

 
 

 
 
 
  



 

 
Figure S17. 13C NMR of material 5. 

 
  



 

 
Figure S18. 13C NMR of material 5. 

 


