Next Article in Journal
Blue Phosphorescent Pt(II) Compound Based on Tetradentate Carbazole/2,3′-Bipyridine Ligand and Its Application in Organic Light-Emitting Diodes
Previous Article in Journal
Ciprofloxacin Removal via Acid-Modified Red Mud: Optimizing the Process, Analyzing the Adsorption Features, and Exploring the Underlying Mechanism
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis

1
Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Agricultural Product Quality Supervision and Inspection Center, Ministry of Agriculture, Kunming 650223, China
2
Key Laboratory of Ethnomedicinal Resource Chemistry, Yunnan University for Nationalities, Kunming 650500, China
3
The Yunnan Provincial Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
4
International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
*
Author to whom correspondence should be addressed.
Molecules 2024, 29(12), 2930; https://doi.org/10.3390/molecules29122930
Submission received: 12 May 2024 / Revised: 3 June 2024 / Accepted: 10 June 2024 / Published: 20 June 2024

Abstract

:
A method was developed to identify and trace the geographic sources of Erigeron breviscapus using high-resolution mass spectrometry and chemometrics. The representative samples were collected from the geographic area of Honghe Dengzhanhua and other areas in Yunnan province and Guizhou province. The data points could be determined well using the PCA and PLS-DA diagram. A total of 46 characteristic compounds were identified from Honghe Dengzhanhua and within Guizhou province, but 37 compounds were different from Honghe Dengzhanhua and other counties in Yunnan province. Two biomarkers were found from three regions. Their structures were inferred as 8-amino-7-oxononanoic acid and 8-hydroxyquinoline, and they had the same molecular composition. This may suggest that a possible synthesis pathway can be proven in the future.

Graphical Abstract

1. Introduction

Traditional medicines are cultivated in specific regions with a long history of plants. These traditional medicines in a characteristic region are called “orthodox” medicines. Erigeron breviscapus is an important traditional medicine. As one of the so-called “Yunyao” varieties, it has been listed as one of the “top ten Yunyao” and “five natural series” medicines in Yunnan province, China [1]. It is known that the best-quality Erigeron breviscapus is planted in the Honghe area of Yunnan province, and due to its area of production, is named “Honghe Dengzhanhua” [2]. Although this medicine is identified by its appearance, shape, and main chemical component (scutellarin) in the Chinese national standard, it is difficult to identify the geographic origin of Erigeron breviscapus in different plant regions. Since there are tens of major components, Li et al. [3] reported the structure of 64 volatile organic compounds from Erigeron breviscapus. However, no biomarker has been found to indicate its geographic origins, so it is urgent to develop an effective traceability technology to identify the geographic production of Honghe Dengzhanhua.
The technology used to determine geographic origin consists of stable-isotope mass spectrometry [4,5], mineral element analysis [6,7], and chromatographic fingerprinting [8,9,10]. However, when an analyte consists of unknown compounds, it is difficult to qualitatively analyze. This problem can be solved by using high-resolution mass spectrometry with nontarget screening technologies [11,12].
Chromatographic fingerprinting involves such complex, multivariate data that it is difficult to distinguish between very similar chromatograms [13]. Thus, the chemical pattern needs to be recognized by using chemometric analysis, such as principal component analysis (PCA) and partial least squares regression (PLS). ** discriminant compounds, which suggests that the possible synthesis of the two candidate biomarkers can be proven in the future. However, the differences in the metabolites produced in different geographic regions and cultivars have not been thoroughly researched. Overall, this research advances our knowledge of the metabolic mechanisms in geographic regions and lays a firm foundation for the further cultivation of orthodox pharmacy.

Supplementary Materials

The following supporting information can be downloaded at: https://mdpi.longhoe.net/article/10.3390/molecules29122930/s1. Detailed information on the 424 metabolites identified in Erigeron breviscapus from different areas of two provinces is listed in Tables S1–S3. The VIP scores of samples, a volcano plot, a clustering heat map, and a total ion chromatogram (TIC) mass spectrum is shown in Figures S1–S4.

Author Contributions

Conceptualization, J.Z. and H.L.; methodology, J.Z.; software, J.Z. and T.L.; validation, J.Z. and H.T.; formal analysis, H.T.; investigation, X.H.; resources, X.H.; data curation, J.Z.; writing—original draft preparation, J.Z.; writing—review and editing, H.L.; visualization, J.Z.; supervision, T.L.; project administration, H.L.; funding acquisition, H.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Yunnan province Talent funding projects (202305AF150015) and the Yunnan Province Science and Technology Major Project (202102AE090021).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors on request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Su, C.; Pu, Y.Z.; Gao, Y.; Wang, G.Y.; Xu, L. Development Status and Counterplans of Erigeron breviscapus Industry in Yunnan Province. J. Chin. Med. Mater. 2023, 46, 1067–1072. [Google Scholar]
  2. GB/T 23404-2009; Product of Geographical Indication of Honghe Dengzhanhua. Standardization Administration of China: Bei**g, China, 2009.
  3. Li, J.F.; Liao, L.M. Study on the relationship between structure and retention time of volatile component from Erigeron breviscapus. Nat. Prod. Res. 2021, 33, 236–245. [Google Scholar]
  4. Francesca, S.; Claude, G.; Fabiano, R.; Luciano, B.; Maria, C.; Michael, W.; Sundaram, l.; Károly, H.; Frank, V. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios. Rapid Commun. Mass. Spectr. 2005, 19, 2111–2115. [Google Scholar]
  5. Li, C.L.; Nie, J.; Zhang, Y.Z.; Shao, S.Z.; Liu, Z.; Karyne, R.; Zhang, W.X.; Yuan, Y.W. Geographical origin modeling of Chinese rice using stable isotopes and trace elements. Food Control. 2022, 138, 108997. [Google Scholar] [CrossRef]
  6. Liu, H.Y.; Zhao, Q.Y.; Guo, X.Q.; Tang, C.H.; Yu, X.N.; Zhan, T.F.; Qin, Y.C.; Zhang, J.M. Application of isotopic and elemental fingerprints in identifying the geographical origin of goat milk in China. Food Chem. 2019, 277, 448–454. [Google Scholar] [CrossRef] [PubMed]
  7. Dou, X.; Zhang, L.; Yang, R.; Wang, X.; Yu, L.; Yue, X.; Ma, F.; Mao, J.; Wang, X.; Zhang, W. Mass spectrometry in food authentication and origin traceability. Mass. Spectrom. Rev. 2022, 42, 1772–1807. [Google Scholar] [CrossRef] [PubMed]
  8. Zeng, F.; Wang, X.M.; Yang, M.; Lu, Z.Q.; Guo, D.A. Fingerprint analysis of different Panax herbal species by HPLC-UV method. J. Chin. Pharm. Sci. 2007, 16, 277–281. [Google Scholar]
  9. Fan, X.H.; Wang, Y.; Cheng, Y.Y. LC/MS fingerprinting of Shenmai injection: A novel approach to quality control of herbal medicines. J. Pharm. Biomed. Anal. 2006, 40, 591–597. [Google Scholar]
  10. Lin, T.; Chen, X.L.; Du, L.J.; Wang, J.; Hu, Z.X.; Cheng, L.; Liu, Z.H.; Liu, H.C. Traceability Research on Dendrobium devonianum Based on SWATH to MRM. Foods 2023, 12, 3608. [Google Scholar] [CrossRef] [PubMed]
  11. Li, Q.Q.; Yang, S.P.; Li, B.; Zhang, C.Y.; Li, Y.; Li, J.X. Exploring critical metabolites of honey peach (Prunus persica (L.) Batsch) from five main cultivation regions in the north of China by UPLC-Q-TOF/MS combined with chemometrics and modeling. Food Res. Int. 2022, 157, 111213. [Google Scholar] [CrossRef]
  12. Liu, X.L.; Zhong, C.; **e, J.; Liu, H.; **e, Z.N.; Zhang, S.H.; **, J. Geographical region traceability of Poria cocos and correlation between environmental factors and biomarkers based on a metabolomic approach. Food Chem. 2023, 417, 135817. [Google Scholar] [CrossRef] [PubMed]
  13. Xu, C.J.; Liang, Y.Z.; Chau, F.T.; Heyden, Y.V. Pretreatments of chromatographic fingerprints for quality control of herbal medicines. Chromatogr. A 2006, 1134, 253. [Google Scholar] [CrossRef]
  14. **ao, L.J.; Liu, Y.Y.; Zhao, Y.; Li, G.D.; Qian, Z.G. Quality evaluation of Erigeron breviscapus from different origins and its related species by HPLC coupled with chemometrics. Chin. Trad. Herb. Drug 2019, 50, 3438–3442. [Google Scholar]
  15. Chen, Y.; Zhu, S.B.; **e, M.Y.; Nie, S.P.; Liu, W.; Li, C.; Gong, X.F.; Wang, Y.X. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Anal. Chim. Acta 2008, 623, 146–156. [Google Scholar] [CrossRef] [PubMed]
  16. Li, Y.R.; Yao, J.L.; Fan, H.F. The Fingerprint of Erigeron breviscapus and QAMS Analysis. J. Chin. Med. Mat. 2019, 42, 110–116. [Google Scholar]
  17. Shang, J.; Wu, Z.W.; Ma, Y.G. Phenylpropanoid metabolism pathway in plants. Chin. J. Biochem. Mol. Biol. 2022, 38, 1467–1476. [Google Scholar]
  18. Zhou, T.; Gao, D.; Li, J.X.; Xu, M.J.; Xu, J. Identification of an α-Oxoamine Synthase and a One-Pot Two-Step Enzymatic Synthesis of α-Amino Ketones. Org. Lett. 2021, 23, 37–41. [Google Scholar] [CrossRef]
  19. Yamagishi, T.; Uchida, C.; Ogawa, S. Total Synthesis of Trehalase Inhibitor Salbostatin. ChemInform 1995, 1, 634–636. [Google Scholar]
  20. Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 2002, 6, 1948–1954. [Google Scholar] [CrossRef]
  21. Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013, 7, 1157–1178. [Google Scholar] [CrossRef]
  22. Joo, K.M.; William, J.H.; Marcel, S.H.; Huey, W.C. Enzymes in carbohydrate synthesis: N-acetylneuraminic acid aldolase catalyzed reactions and preparation of N-acetyl-2-deoxy-D-neuraminic acid derivatives. J. Am. Chem. Soc. 2002, 110, 6481–6486. [Google Scholar]
  23. Julia, P.; Markus, N.; Dirk, H. Ralfuranone Is Produced by an Alternative Aryl-Substituted γ-Lactone Biosynthetic Route in Ralstonia solanacearum. J. Nat. Prod. 2014, 77, 1967–1971. [Google Scholar]
  24. Akhtar, S.; Mushtaq, N.; Kamil, A.; Naeem, S. Analgesic and anxiolytic evaluation of N’substituted arylsulphonyl and benzoyl derivatives of 4-pyriidine carbohydrazide. Fuuast J. Biol. 2014, 4, 123–126. [Google Scholar]
  25. Dai, J.Q.; Krohn, K.; Gehle, D.; Kock, I.; Floerke, U.; Aust, H.J.; Draeger, S.; Schulz, B.; Rheinheimer, J. Active Secondary Metabolites from Fungi. Part 22. New Oblongolides Isolated from the Endophytic Fungus Phomopsis sp. from Melilotus dentata from the Shores of the Baltic Sea. ChemInform 2006, 37, 4009–4016. [Google Scholar] [CrossRef]
  26. Yang, H.W.; Zhao, C.X.; Romo, D. Studies of the Tandem Mukaiyama Aldol-Lactonization (TMAL) Reaction: A Concise and Highly Diastereoselective Route to β-Lactones Applied to the Total Synthesis of the Potent Pancreatic Lipase Inhibitor(-)-Panclicin D. ChemInform 1998, 29, 16471–16488. [Google Scholar] [CrossRef]
  27. Boutet, J.; Guerreiro, C.; Mulard, A.L. Efficient Synthesis of Six Tri- to Hexasaccharide Fragments of Shigella flexneri Serotypes 3a and/or X 0-Antigen, Including aStudy on Acceptors Containing N-Trichloroacetylglucosamine versus N-Acetylglucosamine. J. Org. Chem. 2009, 74, 2651–2670. [Google Scholar] [CrossRef] [PubMed]
  28. Andruszkiewicz, R.; Rozkiewicz, D. An improved preparation of N~2-tert-butoxycarbonyl- and N~2-benzyloxycarbonyl-(S)-2,4-diaminobutanoic acids. Synth. Commun. 2004, 34, 1049–1056. [Google Scholar] [CrossRef]
  29. Joung, Y.U.; Eun-Jung, P.; Tamara, P.K.; Mayuramas, S.N.; Marisa, M.W.; Wei, Y.Z.; John, M.P.; Chee, C.L. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates. J. Nat. Prod. 2016, 79, 1508–1513. [Google Scholar]
  30. Jotterand, N.; Vogel, P. Regioselective Base-induced Ethereal Bridge Openings of 7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic Derivatives Synthesis of Squalestatin Core Analogues. Synlett 1999, 1999, 1883–1886. [Google Scholar] [CrossRef]
  31. Eidenberger, T.; Selg, M.; Krennhuber, K. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus. Fitoterapia 2013, 89, 74–79. [Google Scholar]
  32. Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Zubatyuk, R.I.; Mazepa, A.V.; Klotz, E.A.; Kravchenko, S.V.; Kostyanovsky, R.G. Single-stage synthesis of 3-hydroxy- and 3-alkoxy-5-arylimidazolidine-2,4-diones by reaction of arylglyoxal hydrates with N-hydroxy- and N-alkoxyureas. Chem. Heterocycl. Compd. 2015, 51, 553–559. [Google Scholar] [CrossRef]
  33. Shang, G.L.; Zhang, L.J.; Li, C.B.; Lan, Y.Y.; Wang, A.M.; Huang, Y.; Lin, Z.; Fu, X.Z.; Zhou, W.; Qi, X.L.; et al. Rapid screening and identification of caffeic acid and its esters in Erigeron breviscapus by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 2533–2541. [Google Scholar]
  34. Chen, G.; Gao, H.; Tang, J.; Huang, Y.; Chen, Y.; Wang, Y.; Zhao, H.; Lin, H.; **e, Q.; Hong, K.; et al. Benzamides and quinazolines from a mangrove actinomycetes Streptomyces sp. (no. 061316) and their inhibiting caspase-3 catalytic activity in vitro. Chem. Pharm. Bull. 2011, 59, 447–451. [Google Scholar] [CrossRef]
  35. Xu, M.M.; Matthew, L.H.; Amy, L.L.; Mollie, S.T.; Bradley, S.M.; Reuben, J.P. Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola. J. Nat. Prod. 2014, 77, 2144–2147. [Google Scholar] [CrossRef]
  36. Yu, P.S.; Cheng, Q.; Li, L.; Liu, M.; Yang, Y.M.; Ding, F. 2-(4-Methoxyphenyl) ethyl -2-acetamido-2-deoxy-β-d-pyranoside confers neuroprotection in cell and animal models of ischemic stroke through calpain1/PKA/CREB-mediated induction of neuronal glucose transporter 3. Toxicol. Appl. Pharmacol. 2014, 277, 259–269. [Google Scholar] [CrossRef] [PubMed]
  37. Ludmila, E.; Andre, S.N.; Pierre, P. ChemInform Abstract: Asymmetric Synthesis of Amino Sugars. Part 1. Stereoselective Synthesis of (2S,3S,4R,5S)-2-Amino-1,3,4,5,6-hexanepentol Derivatives and Their Conversion to L-Mannosamine Derivatives. ChemInform 2010, 30, 5187–5190. [Google Scholar]
  38. Ram, V.J. One-pot synthesis of mono- and dinitro-1,2,4-triazino[3,2-b]benzothiazoles. Eur. J. Org. Chem. 1988, 1998, 1089–1090. [Google Scholar] [CrossRef]
  39. Li, Z.; Yang, J.Y.; Caj, J.; Ouyang, Z.J.; Zhou, C.H.; Chen, G.Y.; Zhou, X.M. Study on secondary metabolites of endophytic fungus Cladosporium sp. JJM22 hosted in Ceriops tagal. Zhongguo Zhong Yao Za Zhi 2021, 46, 2079–2083. [Google Scholar]
  40. Hu, Z.H.; Zhang, D.H.; Wang, J.X. Direct Synthesis of Amine-functionalized Mesoporous Silica for CO2 Adsorption. Chin. J. Chem. Eng. 2011, 19, 386–390. [Google Scholar] [CrossRef]
  41. Brahmachari, G.; Gorai, D. Progress in the Research on Naturally Occurring Flavones and Flavonols: An Overview. Curr. Org. Chem. 2006, 10, 873–898. [Google Scholar] [CrossRef]
  42. Williams, D.E.; Gunasekara, N.W.; Ratnaweera, P.B.; Zheng, Z.H.; Ellis, S.; Dada, S.; Patrick, B.O. Serpulanines A to C, N-Oxidized Tyrosine Derivatives Isolated from the Sri Lankan Fungus Serpula sp.: Structure Elucidation, Synthesis, and Histone Deacetylase Inhibition. J. Nat. Prod. 2018, 81, 78–84. [Google Scholar] [CrossRef]
  43. Hauer, H.; Ritter, T.; Grotemeier, G. An Improved and Large Scale Synthesis of the Natural Coumarin Scopoletin. ChemInform 1996, 27, 737–738. [Google Scholar] [CrossRef]
  44. Tabopdaa, T.K.; Ngoupayoa, J.; Liub, J.W.; Mitaine-Offerc, A.C.; Ngadjuia, B.T.; Lacaille-Duboisc, M.A.; Luu, B. Induction of Neuronal Differentiation in Neurosphere Stem Cells by Ellagic Acid Derivatives. Nat. Prod. Commun. 2009, 4, 517–520. [Google Scholar] [CrossRef]
  45. Mukhtar, N.; Malik, A.; Riaz, N.; Iqbal, K.; Tareen, R.B. Pakistolides A and B Novel Enzyme Inhibitory and Antioxidant Dimeric 4-(Glucosyloxy) Benzoates from Berchemia pakistanica. Helv. Chim. Acta 2004, 87, 416–424. [Google Scholar] [CrossRef]
  46. Wang, L.W.; Li, H.J.; Li, P.; Wei, Y.J.; Tang, D.; Yi, L.; Qian, Z.M. Simultaneous Quantification of Two Major Classes of Constituents in Erigeron breviscapus and Its Extract Injection by RP-HPLC. Chromatographia 2007, 66, 395–401. [Google Scholar] [CrossRef]
  47. Turner, J.G. Tabtoxin produced by Pseudomonas tabaci decreases Nicotiana tabacum glutamine synthetase in vivo and causes accumulation of ammonia. Physiol. Plant Pathol. 1981, 19, 57–67. [Google Scholar] [CrossRef]
  48. Hanaya, T.; Baba, H.; Yamamoto, H. First synthesis of tepidopterin [2′-O-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-l-threo-biopterin]. Carbohydr. Res. 2007, 342, 2159–2162. [Google Scholar] [CrossRef]
  49. Li, E.W.; Tian, R.R.; Liu, S.C.; Chen, X.L.; Guo, L.D. Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J. Nat. Prod. 2008, 71, 664–668. [Google Scholar] [CrossRef]
  50. Mikio, K.; Mikio, K.; Masaaki, A.; Hiroshi, N.; Kenji, M. Valilactone an inhibitor of esterase produced by actinomycetes. J. Antibiot. 1987, 40, 1647–1650. [Google Scholar]
  51. Thirupathi, B.; Jena, B.K. Total Synthesis of(+)-Sacrolide A. Chem. Sel. 2019, 4, 2908–2911. [Google Scholar] [CrossRef]
  52. Yang, R.M.; Yang, J.; Wang, L.; Huang, J.P.; **ong, Z.J.; Luo, J.Y.; Yu, M.M.; Yan, Y.J.; Huang, S.X. Lorneic Acid Analogues from an Endophytic Actinomycete. J. Nat. Prod. 2017, 80, 2615–2619. [Google Scholar] [CrossRef] [PubMed]
  53. Porntep, C.; Suthep, W.; Thammarat, A. Curvularides A-E: Antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata. Chemistry 2010, 16, 11178–11185. [Google Scholar]
  54. Mohammed, K.A.A.; Wasfy, A.A.F.; Bazalou, M.S. Qualitative analysis of ethanolic extract of ginger (Zingiber officinale Rosc) by gas chromatography triple quad time-flight (GC-Q-TOF) technology. Res. J. Pharm. Technol. 2021, 14, 4307–4313. [Google Scholar] [CrossRef]
  55. Wang, R.J.; Lau, K.M.; Hon, P.M.; Mak, T.C.; Woo, K.S.; Fung, K.P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar]
  56. Yang, W.; Zhang, Y.; Li, L.; Li, Y.F.; Chen, X.G. Comparative analysis of chemical constituents of injection Erigerontis with brevis capine by HPLC-DAD. Chin. Tradit. Pat. Med. 2005, 27, 202. [Google Scholar]
  57. Ahmad, G.; Yadav, P.P.; Maurya, R. Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 2004, 65, 921–924. [Google Scholar] [CrossRef]
  58. Garrison, A.; Abouelhassan, Y.; Yang, H.F.; Yousaf, H.H.; Nguyen, T.J.; Huigens, R.W. Microwave-enhanced Friedländer synthesis for the rapid assembly of halogenated quinolines with antibacterial and biofilm eradication activities against drug resistant and tolerant bacteria. Med. Chem. Comm. 2016, 8, 720–724. [Google Scholar] [CrossRef]
Figure 1. The collected samples from the geographic region of Luxi and Mile, Honghe, and other areas of Yunnan province (Dali, Fuming, Qu**g), **ngyi, and Guizhou province.
Figure 1. The collected samples from the geographic region of Luxi and Mile, Honghe, and other areas of Yunnan province (Dali, Fuming, Qu**g), **ngyi, and Guizhou province.
Molecules 29 02930 g001
Figure 2. Loading plots of PCA POA (post ion mode) and NEG (negative ion mode) of Honghe Dengzhanhua (I) and other areas. QC: (QC samples).
Figure 2. Loading plots of PCA POA (post ion mode) and NEG (negative ion mode) of Honghe Dengzhanhua (I) and other areas. QC: (QC samples).
Molecules 29 02930 g002aMolecules 29 02930 g002b
Figure 3. OPLS-DA score chart and model diagram of Honghe and the other four areas.
Figure 3. OPLS-DA score chart and model diagram of Honghe and the other four areas.
Molecules 29 02930 g003
Figure 4. OPLS-DA cross validation details of five areas: (a) positive ion mass and (b) negative ion mass.
Figure 4. OPLS-DA cross validation details of five areas: (a) positive ion mass and (b) negative ion mass.
Molecules 29 02930 g004aMolecules 29 02930 g004b
Figure 5. The PLS-DA 3D score plot for the Honghe geographic region and other areas in Yunnan province and Guizhou province.
Figure 5. The PLS-DA 3D score plot for the Honghe geographic region and other areas in Yunnan province and Guizhou province.
Molecules 29 02930 g005
Figure 6. The possible synthesis of the two biomarkers in Honghe Dengzhanhua.
Figure 6. The possible synthesis of the two biomarkers in Honghe Dengzhanhua.
Molecules 29 02930 g006
Table 1. Difference biomarker in Honghe Dengzhan and Guizhou province analyzed by High resolution mass spectrum.
Table 1. Difference biomarker in Honghe Dengzhan and Guizhou province analyzed by High resolution mass spectrum.
ClassificationNameFormulam/zMass Error [ppm]RT [min]Adduct/ChargeReferenceChanges of Content in Honghe Dengzhanhua
amino acidPhenylalanineC9H11NO2166.086270.14.709[M + M]+[17]up
PolyphenolsGhanamycin AC13H16O9317.0866−0.376.479[M + H]+unknownup
PolyphenolsGhanamycin BC19H28O9401.1802−1.139.069[M + H]+unknownup
amino acidDimethyl N-[2-hydroxy-4-methoxy-2-(2-methoxy-2-oxoethyl)-4-oxobutanoyl]glutamateC15H23NO10360.12882−0.165.693[M + H]+[18]up
PolyphenolsGhanamycin AC13H16O9317.08663−0.275.54[M + H]+Unknownup
amino acid(2S,3R,4S,5R,6R)-2-{[(E)-{2-[(2R,5S,6R)-5-Acetoxy-6-(acetoxymethyl)-5,6-dihydro-2H-pyran-2-yl]ethylidene}amino]oxy}-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetateC26H35NO15602.20782−0.214.695[M + H]+Unknownup
Polyphenols3,4,5-Trimethoxyphenyl 2,4-dideoxy-6-O-[(2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydro-2-furanyl]-beta-d-threo-hexopyranosideC20H30O11447.18575−0.789.408[M + H]+Unknownup
amino acidSalbostatinC13H23NO8322.14928−1.148.402[M + H]+[19]up
amino acidMFCD00025555C9H18N2O3203.13901−0.045.33[M + H]+Unknownup
amino acidD-(+)-TryptophanC11H12N2O2205.0971−0.276.322[M + H]+[20]up
alkaloid2-Methyl-8-quinolinamineC10H10N2159.09163−0.266.322[M + H]+[21]up
alkaloid2-Acetyl-quinoline-8-olC11H9NO2188.070610.016.322[M + H]+[21]up
amino acidNeuraminic acidC9H17NO8268.103944.692.975[M + H]+[22]up
PolyphenolsRalfuranone AC10H8O2193.085930.047.001[M + H]+[23]up
amino acid4-Pyridine carbohydrazideC5CH7N3O317.08664−1.966.481[M + H]+[24]up
PolyphenolsO-methyl melleineC11H12O3193.08589−0.4510.665[M + H]+[25]up
alkaloid(6R)-3,5-Dideoxy-5-{[(3-methyl-2-oxo-4a,8a-dihydro-2H-chromen-7-yl)carbonyl]amino}-6-[(1R,2R)-1,2,3-trihydroxypropyl]-alpha-l-threo-hex-2-ulopyranosonic acidC20H25NO11456.1498−0.522.199[M + H]+Unknownup
amino acidPanclicin DC25H45NO5440.3368−0.584.707[M + H]+[26]up
alkaloid(1R)-1,5-Anhydro-1-({(5S)-3-[(3aS,4R,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}methyl)-d-galactitolC17H27NO10406.17043−0.842.28[M + H]+unknownup
amino acid(2R,3S)-7-Acetamido-6-acetoxy-1,2,3-octanetriyl triacetateC18H29NO9436.21755−0.429.312[M + H]+unknownup
amino acid(S)-malyl-d-glucosaminideC10H17NO9296.09749−0.391.88[M + H]+[21]up
amino acid4-Hydroxy-3-methoxybenzyl 2-acetamido-2-deoxy-beta-d-glucopyranosideC16H23NO8390.17567−0.537.002[M + H]+Unknownup
amino acid8-Amino-7-oxononanoic acidC9H17NO3188.12806−0.33.03[M + H]+[18]up
amino acidalpha-L-Rhap-(1->3)-beta-D-GlcpO[CH2]5NH2C17H33NO10412.21752−0.58.403[M + H]+[27]up
amino acid2-{[2-{[(6-Aminohexanoyl)oxy]methyl}-2-(hydroxymethyl)butoxy]carbonyl}cyclohexanecarboxylic acidC20H35NO7402.24842−0.589.323[M + H]+Unknownup
amino acidN-(tert-Butoxycarbonyl)-L-glutamineC10H18N2O5247.12875−0.364.501[M + H]+[28]up
Polyphenols1-O-[(2E,4Z,7Z)-2,4,7-Decatrienoyl]-2-O-beta-d-glucopyranosyl-beta-d-glucopyranoseC22H34O12491.21206−0.89.167[M + H]+[29]up
acid5-(Ethoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acidC11H14O7259.08103−0.798.402[M + H]+[30]up
flavonoidsGuaijaverinC20H18O11435.09183−0.838.498[M + H]+[31]up
amino acidDimethyl N,N-bis{[(2-methyl-2-propanyl)oxy]carbonyl}-L-glutamateC17H29NO8376.19588−1.98.849[M − H]-unknownup
alkaloid(S)-5-(4-hydroxybenzoyl)-3-isobutyrylimidazolidine-2,4-dioneC14H14N2O5291.09716−1.359.108[M + H]+[32]up
alkaloidMethyl 4-(4-methyl-1-piperazinyl)-3-nitrobenzoateC13H17N3O4280.12912−0.235.65[M + H]+unknowndown
caffeoyl1,3,5-tri-O-caffeoylquinic acidC34H30O15679.16532−0.6310.208[M + H]+[33]down
amino acid3-hydroxy-2-N-iso-butyryl-anthranilamideC11H14N2O3223.10758−0.622.436[M + H]+[34]down
alkaloidMFCD00023832C12H18N2O4237.1233−0.295.963[M + H]+Unknowndown
amino acidFW054-1C15H21NO6312.14393−0.744.61[M + H]+Unknowndown
alkaloid8-HydroxyquinolineC9H7NO146.05998−0.396.321[M + H]+[21]down
alkaloid2-Hydroxy-5-(3,5,7-trihydroxy-4-oxo-4H-chromen-2-yl) phenyl 6-aminohexanoateC21H21NO8416.13367−0.778.675[M + H]+unknowndown
alkaloidIsopimara-8,15-dien-19-olC20H32 O289.25222−1.2111.983[M + H]+[35]down
amino acid3-(4-Hydroxy-3-methoxyphenyl)propyl 2-acetamido-2-deoxy-beta-d-glucopyranosideC18H27NO8386.18053−1.0710.665[M + H]+[36]down
amino acid(2R,3R,4R,5S,2′R,3′R,4′R,5′S)-6,6′-[(2-Phenylethyl)imino]di(1,2,3,4,5-hexanepentol)C20H35NO10450.23328−0.219.183[M + H]+[37]down
alkaloid6-Nitro-1,2,3-benzotriazin-4(1H)-one 2-oxideC7H4N4O4209.0305−0.163.202[M + H]+[38]down
PolyphenolUsimine AC24H25NO10488.15493−0.3911.568[M + H]+unknowndown
Polyphenol(2R,4R)-3,4-dihydro-5-methoxy-2-methyl-2H-1-benzopyran-4-olC11H14O3195.1015−0.4110.16[M + H]+[39]down
Amino acidStearoyl glutamic acidC23H43NO5414.32123−0.4212.421[M + H]+[40]down
FlavonePongamoside CC24H22O10471.12845−0.3711.568[M + H]+[41]down
Table 2. Difference biomarker in Honghe Dengzhan and other area in Yunnan province analyzed by High resolution mass spectrum.
Table 2. Difference biomarker in Honghe Dengzhan and other area in Yunnan province analyzed by High resolution mass spectrum.
ClassificationNameFormulam/zMass Error [ppm]RT [min]Adduct/ChargeReferenceChanges of Content in Honghe Dengzhanhua
amino acidEpinephrine glucuronideC15H21NO9360.12881−0.235.696[M + M]+[41]up
alkaloid(S)-5-(4-hydroxybenzoyl)-3-isobutyrylimidazolidine-2,4-dioneC14H14N2O5291.09716−1.359.108[M + H]+[32]up
amino acid8-Amino-7-oxononanoic acidC9H17NO3188.12806−0.33.03[M + H]+[18]up
amino acidN-(tert-Butoxycarbonyl)-l-glutamineC10H18N2O5247.12875−0.364.501[M + H]+[28]up
amino acidSerpulanine CC14H18N2O3263.13895−0.236.747[M + H]+[42]up
amino acidSalbostatinC13H23NO8322.14928−1.148.402[M + H]+[19]up
alkaloid2-Acetyl-quinoline-8-olC11H9NO2188.070610.016.322[M + H]+[21]up
alkaloidScopoletinC10H8O4193.04947−0.329.093[M + H]+[43]up
polyphenols2-hydroxy-3,8-dimethoxy -7-((3,4,5-trihydroxytetrahydro -2H-pyran-2-yl)oxy) chromeno [5,4,3-cde]chromene-5,10-dioneC21H18O12463.08705−0.127.38[M + H]+[44]up
PolyphenolsBis{2-[2-(methacryloyloxy)ethoxy]ethyl} 4-cyclohexene-1,2-dicarboxylateC24H34O10483.22221−0.5512.224[M + H]+unknownup
alkaloid(1R)-1,5-Anhydro-1-({(5S)-3-[(3aS,4R,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}methyl)-d-galactitolC17H27NO10406.17043−0.842.28[M + H]+unknownup
acidM-hydroxyphenyl acetic acidC7H6O3139.038960.276.766[M + H]+[21]up
Polyphenols4-(beta-d-Glucosyloxy)benzoateC13H16O8323.07363−0.346.765[M + H]+[45]up
flavonoidsApigeninC15H10O5271.05984−0.9812.137[M + H]+[46]up
alkaloidTabtoxinC11H19N3O6290.13446−0.681.65[M + H]+[47]up
alkaloid4-Nitrobenzyl 2-oxo-2H-chromene-3-carboxylateC17H11NO6326.06543−1.59.7[M + H]+unknownup
Amino acid3,4-Dimethoxybenzyl 2-acetamido-2-deoxy-beta-d-glucopyranosideC17H25NO8372.16512−0.4710.666[M + H]+ [48]
PolyphenolsPestalotheol GC16H22O6311.14853−1.2810.976[M + H]+[49]down
PolyphenolsO-methyl melleineC11H12O3193.08589−0.4510.665[M + H]+[25]down
Amino acidStearoyl glutamic acidC23H43NO5414.32123−0.4212.421[M + H]+[40]down
amino acidValilactoneC22H39NO5398.28979−0.8111.671[M + H]+[50]down
PolyphenolsGloeolactoneC18H28O3293.21063−1.3311.302[M + H]+ down
Polyphenols9-epi-sacrolide AC18H28O4309.20569−0.9811.619[M + H]+[51]down
PolyphenolsRalfuranone AC10H8O2193.08587−0.3610.665[M + H]+[23]down
acidLorneic acid BC17H24O3309.20594−0.811.391[M + H]+[23]down
amino acidCurvularide AC18H35NO5346.25842−1.111.475[M + H]+[52]down
amino acidTributyl 2,2′,2″-nitrilotriacetateC18H33NO6360.23764−1.1711.89[M + H]+unknowndown
amino acid3-(4-Hydroxy-3-methoxyphenyl)propyl 2-acetamido-2-deoxy-beta-d-glucopyranosideC18H27NO8386.18053−1.0710.665[M + H]+unknowndown
PolyphenolsTributyl AconitateC18H30O6343.21083−1.8611.896[M + H]+[53]down
caffeoyl1,3,5-tri-O-caffeoylquinic acidC34H30O15679.16575−1.1311.02[M + H]+[33]down
caffeoyl3,4,9-tri-Caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosonic acidsC35H30O16707.16028−0.5411.156[M + H]+[33]down
amino acidDimethyl 4-acet amidodecanedioateC14H25NO5288.18028−0.837.673[M + H]+[54]down
amino acidbutoctamideC16H29NO5316.21145−1.279.201[M + H]+unknowndown
caffeoylNeochlorogenic acidC16H18O9355.10218−0.866.281[M + H]+[46]down
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, J.; Tian, H.; Lin, T.; Huang, X.; Liu, H. Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis. Molecules 2024, 29, 2930. https://doi.org/10.3390/molecules29122930

AMA Style

Zhang J, Tian H, Lin T, Huang X, Liu H. Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis. Molecules. 2024; 29(12):2930. https://doi.org/10.3390/molecules29122930

Chicago/Turabian Style

Zhang, Jiao, Heng Tian, Tao Lin, **angzhong Huang, and Hongcheng Liu. 2024. "Traceability Research on Geographic Erigeron breviscapus Based on High-Resolution Mass Spectrometry and Chemometric Analysis" Molecules 29, no. 12: 2930. https://doi.org/10.3390/molecules29122930

Article Metrics

Back to TopTop