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Supplementary Work 

S.1. Background
S.1.1. Nonlinear Autoregressive (NAR) Neural Network

The Nonlinear Autoregressive (NAR) model is used for 
interpolation, regression, and discrete-time series prediction. NAR 
neural network is a discrete model comprising of an input layer, input 
delay, hidden layer, an output layer, and output delay [1]. The network 
weights and neurons are optimized during the training phase using the 
Levenberg-Marquardt algorithm. Adjustment of hidden layers’ errors 
is performed by back-propagating the error of the outer layer to further 
backward layers, i.e., input layers. There are two steps in the algorithm. 
In the first step, the input is handled for forward propagation of 
information, where it is processed one by one at each unit from the 
input layer to the hidden layer. In the second stage, the reverse flow of 
the information is being made for minimizing the error to its least value 
[1]. The mathematical formulation followed by the NAR network is 
given in equation (S.1) [2]. Further details can be seen in [1] and [2]. 𝑥(𝑡) = 𝑓 𝑦(𝑡 − 1) + 𝑦(𝑡 − 2) + ⋯ + 𝑦(𝑡 − 𝑑) + ε(t) (S1) 𝑤ℎ𝑒𝑟𝑒  𝑓 = 𝑡ℎ𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒  𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠 𝑥(𝑡) = 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑓  𝑦 𝑎𝑡 𝑎 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 𝑑 =  𝑝𝑎𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 ε(t) = 𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒𝑡 
S.1.2. Long short-term memory networks and Bidirectional LSTMs

Long Short-Term Memory (LSTM) network is a type of Recurrent 
Neural Networks (RNN) as it comprises a recursive property similar to 
that of RNN. This network has a unique ability of memory and 
forgetting mode, i.e., adapted by the timing characteristics for 
performing the learning tasks. Within that, LSTM also solves the 
problem of vanishing and exploding gradient using the 
backpropagation through time (BPTT) training process, which was not 
solved by the standard RNN. This ability makes the most use of hidden 
information and the time-dependent relationship in sequence data. 
Unlike conventional RNN, the hidden layer of LSTM is not a common 
neural unit, but it is unit that has a unique memory system, as shown 
in Figure 1. A number of operations are performed inside of a single 
LSTM unit for generating an output value. There are three gates named 
as input, forget and output gate which helps in producing the output 
by neglecting the unnecessary data and only keep the information 
which is important for minimizing the error of prediction [3]. Equations 
(S.2),( S.3), ans (S.4) are related with these gates [4]. These gates are 
typically described by the sigmoid functions [5]. Figure S1. is showing 
the basic architecture of NAR and LSTM networks with the 
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representation of their mathematical computations [5]. Further details 
can be seen in [3], and [4]. 𝑓 =  ( 𝑥 𝑈 ℎ 𝑊  )  (S2) 𝐼 =  ( 𝑥 𝑈 ℎ 𝑊  )  (S3) 𝑜 =  ( 𝑥 𝑈 ℎ 𝑊  ) (S4) 

𝑤ℎ𝑒𝑟𝑒  ℎ  =  𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 ℎ  =  𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝐶  =  𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝐶  =  𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝑥 = 𝑖𝑛𝑝𝑢𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑈 , 𝑈 , 𝑈 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑊 , 𝑊 , 𝑊 = 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 

Figure S1. The basic architecture of NAR and LSTM networks with the 
representation of their mathematical computations [5]. 

Bidirectional LSTM networks have an inverse learning mechanism 
while comparing with RNN and LSTM. For the optimization of the 
output results, BiLSTM also considers future information along with 
historical knowledge of data. In a basic BiLSTM network, there are two 
independent layers of LSTMs; one of them is used for forward training 
while the other for reverse training of the network. The final result of 
BiLSTM is actually a combined output result of the two forward and 
backward LSTM network layers [6]. 

S.2. Current Research Work with NAR and LSTM
Models for Solving the Engineering Problems

Ibrahim et al. [7] utilized NAR and Discrete Wavelet Transform 
(DWT) for increasing the life of the battery. He developed a new energy 
management strategy by utilizing real data of a military hybrid vehicle. 
Chun Suet et al. [8] investigated the batteries historical operation data 
and then built four different types of health indicators for them. He 
utilized a generalized regression neural network (GRNN), and NAR to 
predict the batteries online RUL. Zhang et al. [9] worked for the RUL 
prediction of lithium-ion batteries. He employed LSTM for learning the 
capacity degradation trajectories of batteries. He used the resilient 
mean square back-propagation method for adaptively optimizing his 
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LSTM model. Ali et al. [10] developed a CNN-LSTM Hybrid Deep 
Neural Network Model (HDNN), which estimated the RUL using two 
deep learning models concurrently for the very first time. He tested his 
HDNN model on the NASA commercial modular aero-propulsion 
system simulation (C-MAPSS) dataset, and his results outperformed 
other traditional techniques. Zhanga et al. [11] developed a new 
method using LSTM. For explaining the system health condition, he 
translated the raw sensor data to an interpretable health index. He also 
tracked the historical degradation of the system for predicting its future 
health condition. He used NASA’s C-MAPSS dataset for verification of 
his method. His developed method simply outperformed other 
traditional methods. Wang et al. [12] developed a new approach of RUL 
prediction via utilizing the Bidirectional Long Short-Term Memory 
(BiLSTM) network. He experimented with his model with the CMAPSS 
dataset and proved that his model is better than other traditional 
approaches of RUL estimation in terms of accuracy. Trappey, A. et al. 
[13] performed real time monitoring of main parameters of power
transformers using data mining for their fault predictions. She utilized
a combination of Principal component analysis (PCA) and a back-
propagation artificial neural network (BP-ANN) for the prediction
model. Wentao et al. [14] utilized support vector data normalized
correlation coefficient for dividing the whole life of bearings into fast
and normal degradation state. Then he used CNN for transforming
health state labels and raw vibration signals. Ultimately he utilized
LSTM for RUL prediction and experimented on bearing data sets of
IEEE PHM Challenge 2012. Peng Shi et al. [15] developed a hybrid
LSTM-CNN model for material fatigue RUL prediction. He tested his
model on 1193 groups of carbon steel fatigue data set and found
promising results. Hai Li et al. [16] developed a deep bidirectional Long
Short Term Memory (DBiLSTM) network model for predicting the RUL 
of the milling machine tool with limited data. He verified the
effectiveness of his formulated DBiLSTM by conducting experiments
on several workpieces of stainless steel using the milling machine tool.
Fu-Kwun et al. [17] developed a bi-directional LSTM model with an
attention mechanism (BILSTM-AT) for predicting the voltage
degradation of Proton exchange membrane fuel cells (PEMFCs). He
used the Random forest regression model for extracting the important
variables as the inputs for his model and then utilized the sliding
window method for predicting the RUL of PEMFCs.

Thus, the literature review revealed that NAR, LSTM, and BiLSTM 
are such strong algorithm that have been used individually or with 
some other hybrid combinations for many engineering applications 
like batteries [7–9], aircraft turbofan jet engines [10–12], bearings [14], 
carbon steel fatigue [15], milling machine tool [16], proton exchange 
membrane fuel cell [17], etc. But as per the author’s best knowledge, no 
one has used them as a combination via making a hybrid model for the 
RUL prediction. Keeping in view all the above-given literature, the 
NAR-LSTM-BiLSTM modeling was performed for the RUL prediction 
of available slurry pumps. 
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