Surfactant-enhanced solubilization of chlorinated organic compounds contained in DNAPL from lindane waste: Effect of surfactant type and pH

Supplementary Material

Raul García-Cervilla^a, Arturo Romero^b, Aurora Santos^c and David Lorenzo^d*

Chemical and Materials Engineering Department. University Complutense of Madrid. Spain.

Keywords: DNAPL, Surfactants, Partition, Lindane wastes, Chlorinated Organic Compounds.

Surfactant	Purchased to	Aspect of solution	Molecular Formula	Molecular weight	CMC measured (mg L ⁻¹)	CMC literature (mg L ⁻¹)	FR _{TOC,surf}	HLB
E-Mulse [®] 3	EthicalChem	slightly orange, transparent	Not available	unknown	80	Not available	0.58	Not available
Tween [®] 80	Sigma- Aldrich	slightly orange, transparent	$C_{64}H_{124}O_{26}$	1308	20	13-15 [1]	0.60	15 [1]
Span [®] 80	Sigma- Aldrich	cloudy white	$C_{24}H_{44}O_6$	404	10	7 [2]	0.69	4.3 [3]
Tween [®] 80 (35%) - Span [®] 80 (65%)	Mixture	cloudy white		718	11		0.60	Not available
SDS	Sigma- Aldrich	Transparent	C ₁₂ H ₂₅ NaO ₄ S	608	1800	1586 [1]	0.50	40 [1]

Table S1. Surfactant tested in DNAPL solubilization and main properties.

* $FR_{TOC,surf}$ ($g g^{-1}$) = mass fraction of carbon per mass of surfactant as the response factor obtained from the calibration curves of pure surfactants solutions using TOC analysis

Acronym	Name	CAS	MW	$FR_{TOC,j}^{*}$	В	S
СВ	Chlorobenzene	108-90-7	112	0.64	0.230	0.175
1,3 DCB	1,3-Dichlorobenzene	541-73-1	146	0.49	0.003	0.007
1,4 DCB	1,4-Dichlorobenzene	106-46-7	146	0.49	0.032	0.095
1,2 DCB	1,2-Dichlorobenzene	95-50-1	146	0.49	0.027	0.070
1,3,5 TCB	1,3,5-Trichlorobenzene	108-70-3	180	0.40	0.001	0.004
1,2,4 TCB	1,2,4-Trichlorobenzene	120-82-1	180	0.40	0.069	0.224
1,2,3 TCB	1,2,3-Trichlorobenzene	87-61-6	180	0.40	0.005	0.043
TetraCB	1,2,4,5-Tetrachlorobenzene	95-94-3/	214		0.020	0.087
(1,2,4,5+1,2,3,5)	1,2,3,5-Tetrachlorobenzene	634-90-2	214	0.34	0.020	0.087
TetraCB (1,2,3,4)	1,2,3,4-Tetrachlorobenzene	634-66-2	214	0.34	0.023	0.106
v–PentaCX	v-Pentachlorocyclohexene	342631-	2.52		0.067	0.012
1 I ChiaCA	y i entaemoroeyeronexene	17-8	252	0.29	0.007	0.012
PentaCB	1,2,3,4,5-Pentachlorobenzene	608-93-5	248	0.29	0.002	0.007
δ-PentaCX	δ-Pentachlorocyclohexene	643-15-2	252	0.29	0.027	0.009
θ-PentaCX	θ-Pentachlorocyclohexene	319-94-8	252	0.29	0.006	0.001
HexaCX-a	Hexachlorocyclohexene	1890-41-1	289	0.25	0.010	0.003
β-PentaCX	β-Pentachlorocyclohexene	319-94-8	252	0.29	0.010	0.001
η-Penta CX	η-Pentachlorocyclohexene	54083-24- 8	252	0.29	0.023	0.000
HexaCX-b	Hexachlorocyclohexene	1890-41-1	289	0.25	0.008	0.000
HexaCX-c	Hexachlorocyclohexene	1890-41-1	289	0.25	0.006	0.003
α-HCH	α -Hexachlorocyclohexane	319-84-6	291	0.25	0.035	0.020
HexaCX-d	Hexachlorocyclohexene	1890-41-1	289	0.25	0.001	0.000
β-ΗCΗ	β-Hexachlorocyclohexane	319-85-7	291	0.25	0.000	0.000
γ-HCH	γ-Hexachlorocyclohexane	58-89-9	291	0.25	0.099	0.068
HeptaCH-1	Heptachlorocyclohexane	707-55-1	322	0.22	0.142	0.028
δ-НСН	δ-Hexachlorocyclohexane	319-86-8	291	0.25	0.073	0.012
ε-HCH	ε-Hexachlorocyclohexane	6108-10-7	291	0.25	0.010	0.005
HeptaCH-2	Heptachlorocyclohexane	707-55-1	322	0.22	0.050	0.014
HeptaCH-3	Heptachlorocyclohexane	707-55-1	322	0.22	0.021	0.006
		Molecula	ar Weigl	ht DNAPL	232	191

Table S2. Mole fraction of COCs from B and S DNAPLs samples used.

* $FR_{TOC,surf}$ ($g g^{-1}$) = mass fraction of organic carbon per mass of j COC.

Surfactant	(Csurf,AQ)0 (g·L ⁻¹)
E3	0, 3.5, 5.7, 8.5, 17
SDS	0, 3, 5, 7.5, 15
T80	0, 3, 5, 7.5, 15
TS80	0, 3, 5, 7.5, 15

Table S3. Experimental conditions of the solubility tests carried out. $w_{ORG_0} = 400 \text{ mg } V_{aq} = 0.02 \text{ L}, \text{ pH} = 7 \text{ and} > 12 (7 \text{ g L-1 NaOH}); \text{DNAPL: B and S}$

			B pH=7			S pH=7	
Surfactant	Parameter	Value	Standard Error	R ²	Value	Standard Error	R ²
	$C_{s,or}$ $q_{surf} \cdot q_{DNADI}^{-1}$	0.093	0.027		0.093	0.024	
SDS	K $g_{aq} \cdot g_{surf}^{-1}$	0.144	0.087	0.98	0.159	0.090	0.91
	$C_{s,or}$ $g_{surf} \cdot g_{DNAPI}^{-1}$	0.387	0.075	0.01	0.354	0.085	0.00
TS80 and T80	K $g_{aq} \cdot g_{surf}^{-1}$	0.155	0.062	0.91	0.097	0.041	0.99
 F2	$C_{s,or}$ $g_{surf} \cdot g_{DNAPL}^{-1}$	0.362	0.023	0.07	0.415	0.153	0.00
E3	$K \\ g_{aq} \cdot g_{surf}^{-1}$	2.179	0.609	0.97	0.126	0.091	0.98
		Value	B pH>12 Standard Error	R ²	Value	S pH>12 Standard Error	R ²
All		0.020	0.001	0.97	0.016	0.001	0.93

Table S4. Parameters and statically significance obtain to fit Eq. 4 and Eq.5 to the data in Figure 1 at pH=7 and pH> 12 for both DNAPLs, B and S.

	pH = 7										
Organic	E	3	SI	DS	Т	80	TS80				
phase	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)			
	0.5	3.1	2.6	1.2	2.0	8.9	1.9	10.2			
D	0.8	5.1	4.4	2.5	3.2	12.3	3.3	16.3			
D	3.2	15.7	6.4	4.3	4.9	30.2	4.7	23.5			
	14.8	62.0	13.8	10.7	12.0	55.1	12.9	52.0			
	2.0	9.55	2.5	2.0	2.0	6.6	2.0	8.6			
c	3.5	17.7	4.3	3.6	3.7	14.5	3.6	15.46			
3	5.2	24.0	6.3	5.3	5.8	25.0	5.3	26.0			
	14.4	58.7	13.8	12.9	13.0	54.4	12.9	45.1			
		pH > 12									
Organic	E	3	SDS		Т80		TS80				
phase	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)	(C _{surf,AQ}) _{eq} (g L ⁻¹)	(C _{COC,AQ}) _{eq} (mmol L ⁻¹)			
	3.1	15.5	2.4	3.1	2.4	16.2	2.5	15.5			
P	4.5	24.6	3.9	5.1	4.3	23.9	4.4	24.6			
В	6.7	37.5	5.8	7.6	6.3	33.9	6.4	36.6			
	15.9	62.5	12.3	16.3	12.8	51.7	13.0	51.7			
	3.3	24.1	3.1	3.8	2.5	13.6	2.8	16.0			
c	3.3 5.0	24.1 32.6	3.1 4.9	3.8 6.4	2.5 4.0	13.6 19.9	2.8 4.5	16.0 21.9			
S	3.3 5.0 6.5	24.1 32.6 38.1	3.1 4.9 6.3	3.8 6.4 9.1	2.5 4.0 6.0	13.6 19.9 28.0	2.8 4.5 6.3	16.0 21.9 30.1			

Table S5. Concentrations of surfactants and COCs in aqueous phase at neutral and alkaline pH and equilibrium state.

		B pH=7			S pH=7	
	Value	Standard Error	R ²	Value	Standard Error	R ²
SDS	0.70	0.03	0.99	1.03	0.08	0.97
Nonionic surfactants	4.33	0.22	0.97	4.05	0.21	0.96
		B pH>12			S pH>12	
	Value	B pH>12 Standard Error	R ²	Value	S pH>12 Standard Error	R ²
SDS	Value 1.32	B pH>12 Standard Error 0.01	R ² 0.99	Value 1.54	S pH>12 Standard Error 0.06	R ² 0.99

Table S6. Parameters and statically significance obtain to fit Eq. 9 to the data in Figure 4 at pH=7 and pH>12 for both DNAPLs, B and S.

Figure S1. Left: organic phase S; Right: organic phase B adding E3 at several concentrations (Initial surfactant concentration from the left to the right: 3, 5, 7.5 and 15 g L⁻¹) and pH=7. Top: Appearance before agitation. Centrum: Appearance after agitation (5h). Bottom: Appearance after 75 h of settling.

Figure S2. Left: organic phase S; Right: organic phase B adding T80 at several concentrations (Initial surfactant concentration from the left to the right: 3, 5, 7.5 and 15 g L⁻¹) and pH=7. Top: Appearance before agitation. Centrum: Appearance after agitation (5h). Bottom: Appearance after 75 h of settling.

Figure S3. Left: organic phase S; Right: organic phase B adding TS80 at several concentrations (Initial surfactant concentration from the left to the right: 3, 5, 7.5 and 15 g L⁻¹) and pH=7. Top: Appearance before agitation. Centrum: Appearance after agitation (5h). Bottom: Appearance after 75 h of settling.

Figure S4. Left: organic phase S; Right: organic phase B adding SDS at several concentrations (Initial surfactant concentration from the left to the right: 3, 5, 7.5 and 15 g L⁻¹) and pH=7. Top: Appearance before agitation. Centrum: Appearance after agitation (5h). Bottom: Appearance after 75 h of settling.

Figure S5. Appearance of emulsion at 75 h of settling after alkali addition: From the top to the bottom: E3, T80, TS80 and SDS. Left: Results with DNAPL from S, Right: Results with B. Initial surfactant concentration from the left to the right: 3, 5, 7.5 and 15 g L⁻¹.

Figure S6. Molar distribution (%) of COCs in the initial DNAPL: B as sum of isomers and COCs distribution in aqueous phase using a surfactant initial concentration of a) $(C_{surf,AQ})_0 = 3g L^{-1}$ b) $(C_{surf,AQ})_0 = 15 g L^{-1}$ at pH >12.

Figure S7. Molar distribution (%) of COCs in the initial DNAPL: S as sum of isomers and COCs distribution in aqueous phase using a surfactant initial concentration of a) $(C_{surf,AQ})_0 = 3g L^{-1}$ b) $(C_{surf,AQ})_0 = 15 g L^{-1}$ at pH>12.

PentaCX

Figure S8. Reaction of HCH and PentaCX isomers in DNPLS to TCBs under alkali conditions adapted from [4].

Figure S9.. Reaction of HeptaCH and HexaCX isomers in DNPLS to TetraCBs under alkali conditions. Adapted from [4].

Surfactatn and DNAPL mass balance under equilibrium donfitions:

The absorbed amount of surfactant in the organic phase under equilibrium conditions, $(C_{surf,ORG})_{eq}$, is calculated by Eq. (1) in $g_{surf}g^{-1}_{org}$. The concentration of surfactant under equilibrium conditions in the aqueous phase($C_{surf,AQ})_{eq}$, is calculated by Eq. (2) in $g_{surf}L^{-1}$. The mass of organic phase in the aqueous volume when equilibrium is achieved, (WORG)EQ, is calculated with Eq.(3) in g_{ORG} .

$$(C_{surf,ORG})_{eq} = [(C_{surf,AQ})_{0} - (C_{surf,AQ})_{eq}] \cdot V_{aq} / (W_{ORG})_{EQ}$$
(1)

$$(C_{surf,AQ})_{eq} = \{(C_{TOC,AQ})_{eq} - \sum [(C_{j,AQ})_{eq} \cdot FR_{TOC,j}] / (FR_{TOC,surf} \cdot 1000)$$
(2)

$$(WORG)_{0}=WDNAPL,0-Vaq\cdot\sum (Cj,AQ)eq$$
(3)

 $(C_{surf,AQ})_0$ is the initial concentration of surfactant in the aqueous solution in $g \cdot L^{-1}$, $(C_{TOC,AQ})_{eq}$ is the concentration of TOC measured in the aqueous phase under equilibrium conditions, $mg \cdot L^{-1}$, $(C_{j,AQ})_{eq}$ is the concentration of the organic pollutant j in the aqueous phase under equilibrium conditions, $mg \cdot L^{-1}$, V_{aq} is the volume of the aqueous phase, L, and $FR_{TOC,surf}$ and $FR_{TOC,j}$ is the mass of carbon in the mass of each surfactant or each j compound, respectively, which are summarized in Table S1.

^{1.} Liang, C.; Hsieh, C.-L. Evaluation of surfactant flushing for remediating EDC-tar contamination. *J. Contam. Hydro.l* **2015**, *177*, 158-166, doi:10.1016/j.jconhyd.2015.04.006.

^{2.} Peltonen, L.J.; Yliruusi, J. Surface pressure, hysteresis, interfacial tension, and CMC of four sorbitan monoesters at water-air, water-hexane, and hexane-air interfaces. *J. Colloid. Interf. Sci.* **2000**, *227*, 1-6, doi:10.1006/jcis.2000.6810.

^{3.} Farooq, A.; Shafaghat, H.; Jae, J.; Jung, S.-C.; Park, Y.-K. Enhanced stability of bio-oil and diesel fuel emulsion using Span 80 and Tween 60 emulsifiers. *Journal of Environmental Management* **2019**, *231*, 694-700, doi:10.1016/j.jenvman.2018.10.098.

^{4.} Lorenzo, D.; García-Cervilla, R.; Romero, A.; Santos, A. Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase. *Chemosphere* **2020**, *239*, 124798, doi:<u>https://doi.org/10.1016/j.chemosphere.2019.124798</u>.