Next Article in Journal
Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition
Previous Article in Journal
Current and Future Therapeutic Strategies for Limb Girdle Muscular Dystrophy Type R1: Clinical and Experimental Approaches
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Saponins in Cancer Treatment: Current Progress and Future Prospects

by
Olusola Olalekan Elekofehinti
1,*,
Opeyemi Iwaloye
1,
Femi Olawale
2,3 and
Esther Opeyemi Ariyo
1
1
Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria
2
Nanogene and Drug Delivery Group, Department of Biochemistry, University of Kwa-Zulu Natal, Durban 4000, South Africa
3
Department of Biochemistry, College of Medicine, University of Lagos, Lagos 101017, Nigeria
*
Author to whom correspondence should be addressed.
Pathophysiology 2021, 28(2), 250-272; https://doi.org/10.3390/pathophysiology28020017
Submission received: 28 April 2021 / Revised: 3 June 2021 / Accepted: 3 June 2021 / Published: 5 June 2021

Abstract

:
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported the role of saponins in cancer and the mechanism of actions, including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis and autophagy. Despite the extensive research and significant anticancer effects of saponins, there are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed to a number of limitations, including toxicities and drug-likeness properties. Recent studies have explored options such as combination therapy and drug delivery systems to ensure increased efficacy and decreased toxicity in saponin. This review discusses the current knowledge on different saponins, their anticancer activity and mechanisms of action, as well as promising research within the last two decades and recommendations for future studies.

1. Introduction

Cancer is a group of diseases that is characterized by uncontrolled cell proliferation. This unconstrained cell growth has the potential to invade nearby and distant tissues causing life-threatening complications [1]. Cancer is a global health challenge and is one of the leading causes of death in both develo** and developed countries [2]. An epidemiological study conducted by the World Health Organization (WHO) noted that cancer accounted for the deaths of 7.6 million individuals in 2018, and this figure was expected to double by 2030 [2]. Several treatment options have been sought to treat cancer, the most common of which is chemotherapy. This treatment involves using drugs/chemical agents to destroy rapidly dividing cells and ultimately prevent the spread to other normal cells in the body. Despite the success rate of chemotherapy, patients continue to suffer from several side effects, such as general weakness, fatigue, loss of appetite and infections. In addition, the lack of selectivity and toxicity of Food and Drug Administration (FDA)-approved anticancer drugs has resulted in a significant drawback in the treatment of cancer [3]. Therefore, the search for alternative therapeutic agents in the treatment of cancer is imperative.
Traditional plants contain phytochemical compounds, which are mainly secondary metabolites used by plants to ensure survival and fecundity. Phytochemical compounds of medicinal importance include glucosinolates, alkaloids, triterpenoid, flavonoids, saponins, pigments and tannins. Various studies investigated the use of secondary plant metabolites in traditional medicine. These secondary metabolites displayed different biological activities, such as antimicrobial, anti-inflammatory, cardioprotective, antiviral and anticancer properties. Approximately 60% of anticancer drugs in clinical use and preclinical trials (vinca alkaloids (vinblastine and vincristine), etoposide, paclitaxel, camptothecin, topotecan, irinotecan, curcumin, resveratrol, genistein, allicin, lycopene, diosgenin, beta-carotene, dactinomycin, bleomycin and doxorubicin, paclitaxel and camptothecin) are derived from plants [4,5,6]. These plant-derived anticancer drugs are widely accepted and generally perceived as relatively safe in terms of toxicity. The significant success achieved so far in using natural compounds as chemotherapeutic alternatives has spurred research interest in other secondary metabolites, such as saponins.
Saponins are a class of structurally diverse phytochemicals that are naturally found in higher plants, marine organisms and microorganisms. This group has displayed various pharmacological properties, including anti-inflammatory, antiviral, cardioprotective, immunoregulatory effects and anticancer activity [7,8]. The profound impact of saponins on cancer cells has gained significant research interest in the pharmaceutical sector. These compounds have demonstrated outstanding potential in inhibiting different cancer cells under in vitro and in vivo conditions. Despite the substantial progress made in recent years, the use of saponins as an anticancer agent has faced certain drawbacks, mainly due to their toxicity and poor pharmacokinetic properties. Therefore, this review comprehensively explores the potential of saponins as an anticancer agent by using various mechanisms; this includes the poorly studied pathways, such as those involved in ferroptosis and necroptosis. Furthermore, the current knowledge on the use of saponins as a chemotherapeutic agent and the window of opportunities it presents for future research were also explored.

2. Classification of Saponins

2.1. Sources of Saponins

Saponins can be obtained from two primary sources, namely natural and synthetic. Saponins acquired from natural organisms are termed “natural”, while those derived from the artificial route via laboratory synthesis are known as “synthetic”.

2.1.1. Synthetic Saponins

Saponins are synthesized artificially by derivatization of saponins obtained from natural sources or via de novo synthesis. Various natural saponins, such as oleanane, ursane, lupane, dammarane, cholestane, spirostane, furostane and cardenolide can be synthesized chemically, using numerous techniques [9]. However, there are some drawbacks to these methods, such as low yield, toxicity and stringent reaction conditions. In recent years, the use of Schmidt trichloroacetimidate in activating sugars has shown great potential [10]. Although the mechanisms involving the chemical synthesis of saponins are beyond the scope of this review, it should be noted that the synthetic approach associated with saponin purification from a natural source forestalls the challenge of low yield and purity [11]. Additionally, this methodology allows for a structure-based optimization that will enable the design of saponins equipped with desirable structural features.

2.1.2. Natural Sources of Saponins

Historically, saponins were primarily derived from vegetables and herbs. Saponins from herbs include soapwort, ginseng, ginsenosides, gypenosides, soapberry rhizomes from the Liliaceae, Dioscoreaceae, Agavaceae, Primulaceae, Sapotaceae and Caryophyllaceae families [12,13]. Furthermore, different types of saponins can be isolated within the same plant species. Saponins were initially thought to be endemic to plants but were later discovered in non-plant sources. In the last three decades, marine organisms have been identified as significant sources of saponins. More specifically, organisms belonging to the phylum Echinodermata are rich sources of saponins. Tian et al. identified three groups of saponins (asterosaponins, cyclic glycosides and polyhydroxysteroidal glycosides) in starfish and sea cucumbers [14].

2.2. Classification Based on the Structure

A typical saponin molecule is made up of distinct structural components consisting of an isoprenoid unit and a sugar residue. The former is referred to as the aglycone component, while the latter is called glycone. Acid hydrolysis of the glycosidic bond between glycone and aglycone of saponins can be used to separate these structural units. The biological activities of saponins are due to their unique structure and amphiphilic nature. It consists of a hydrophilic sugar moiety and a hydrophobic genin (called sapogenin). Additionally, aglycones may possess steroids or triterpenes structure, which is used to classify saponins.
Triterpenoid saponins (basic) consist of four or five rings, with a 30-carbon backbone structure derived from 2,3-oxidosqualene [15]. The pentacyclic triterpenoids are the most abundant in plants, and they include oleananes, lupanes, ursanes and derivatives (such as saikosaponins) (Figure 1).
The less common tetracyclic triterpenoid saponins are dammaranes and their derivatives (including ginsenosides), while the steroidal sapogenins are 27-carbon sugar conjugates of steroids consisting of a five- or six-ring skeleton known as spirostane and furostane, respectively. These include dioscin, diosgenin, polyphyllin D, timosaponin AII, cardenolide and cholestane (Figure 2).
Saponins also differ in structural composition, linkage and the number of sugar chains. Usually, the sugar chain may consist of one or more monosaccharide residues attached at C-3 [16]. Based on the number of sugar residues, saponins are classified as monodesmodic, bidesmodic and polydesmodic, if they contain one, two and more than two sugar residues, respectively. Saponins are also named based on the nature of the sugar residue present on their chain. Glucose containing saponins are regarded as glucosides, while galactose containing saponins are galactosides.

3. Anticancer Mechanisms of Saponin

The anticancer activities of saponins include anti-proliferation, anti-metastasis, anti-angiogenesis and reversal of multidrug resistance (MDR). These effects are brought about by induction of apoptosis, promotion of cell differentiation, immune-modulatory effects, bile acid–binding and amelioration of carcinogen-induced cell proliferation [17]. Different molecular mechanisms are involved in the anticancer activity of saponins (Table 1). It should be noted that the mechanism of anticancer action of saponins is strongly related to the nature of the structural moieties, including the aglycone moiety, the length and linkage of the glycosidic chain, the presence of a functional carboxylic group on the aglycone chain, the number of sugar molecules and hydroxyl group, position of the hydroxyl group, stereo-selectivity and the type of sugar molecule on the glycine chain [18,19,20]. This section considers the critical processes in cancer-cell development and how different saponins help to inhibit cancer at various stages.

3.1. Chemoprevention and Saponin

Chemoprevention is the use of a chemotherapeutic agent to halt or restrict tumor development before the onset of cellular invasion. The chemopreventive action of saponins involves anti-inflammation, redox potential modulation and cell proliferation inhibition through different pathways (Figure 3).

3.1.1. Anti-Inflammatory Activity

The immune system triggers an inflammatory response to foreign invaders as part of the body’s defense mechanism. Nonetheless, excessive or chronic inflammation is associated with different pathological conditions, one of which is cancer [40]. Due to the link between cancer and inflammation, several anti-inflammatory drugs help to decrease the incidence of cancer. Most inflammatory drugs have been designed to selectively target proteins, such as nuclear factor Kappa B (NF-κB), IL-6/STAT3, IL-23/Th-17 and cyclooxygenase-2 (Cox-2), which are responsible for inflammatory response. Similar to other anti-inflammatory drugs, some saponins can regulate the expression of a number of these proteins.
The inducible transcription factor, NF-κB, stimulates the expression of pro-inflammatory and pro-survival genes. These can be activated via a canonical pathway involving TNF-α, T-cell and B-cell receptors. Triggering this protein in cancer cells leads to activation of cell-cycle proteins, metalloproteinase and apoptotic proteins. Reports have identified saponins that inhibit NF-κB and inhibitory kappa B kinase (IKK). For instance, Paris saponin II, a steroidal saponin, inhibits IKK-b, a protein involved in the canonical pathway of NF-κB activation, leading to cell-cycle arrest and apoptosis activation [41]. Moreover, Raddeanin A, a triterpenoid, inactivates NF-κB by preventing the phosphorylation of Ikkb-α. A study by ** saponin derived anticancer agents in the near future.

5. Concluding Remarks

The overwhelming evidence from several studies has shown the different anticancer effects of saponins. Previous research has largely linked the anticancer action to membrane permeabilization (which leads to apoptosis); however, more recently discovered saponins have demonstrated enhanced chemopreventive and chemotherapeutic action, utilizing different cytotoxic pathways. Some of these saponins have been demonstrated to have antioxidant properties as well as the ability to control the expression of proteins involved in cell cycle, cancer progression and metastasis. Despite the progress made so far in the use of saponin for cancer treatment, toxicity and low bioavailability remain significant obstacles. Moreover, another difficulty is the fact that the role of diverse saponin scaffolds in anticancer action is unknown, making drug optimization challenging. Combination therapy and more efficient drug delivery technologies, both of which have been used in saponins research have shown the best promise so far. The evidence from these studies, on the other hand, is primarily from in vitro investigations and is quite limited. Further structure-dependent activity and preclinical and clinical studies are therefore essential to ensure the translation of saponin based anticancer drugs from bench to bedside.

Author Contributions

Conceptualization, O.O.E. and O.I.; methodology, O.O.E., F.O. and E.O.A.; writing—original draft preparation, E.O.A., O.I. and F.O.; writing—review and editing, O.O.E., O.I. and F.O. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. WHO. Preventing Chronic Diseases: A Vital Investment; World Global Report; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
  2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
  3. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [Green Version]
  4. Kassem, M.E.S.; Shoela, S.; Marzouk, M.M.; Sleem, A.A. A sulphated flavone glycoside from Livistona australis and its antioxidant and cytotoxic activity. Nat. Prod. Res. 2012, 26, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
  5. Pandey, M.; Kaur, P.; Shukla, S.; Abbas, A.; Fu, P.; Gupta, S. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study. Mol. Carcinog. 2012, 51, 952–962. [Google Scholar] [CrossRef] [Green Version]
  6. Ameh, S.J.; Tarfa, F.D.; Ebeshi, B.U. Traditional herbal management of sickle cell anemia: Lessons from Nigeria. Anemia 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
  7. Cheng, G.; Gao, F.; Sun, X.; Bi, H.; Zhu, Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP-2/9 production via the p38 MAPK signaling pathway. Mol. Med. Rep. 2016, 14, 3199–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Song, G.; Shen, X.; Li, S.; Li, Y.; Si, H.; Fan, J.; Li, J.; Gao, E.; Liu, S. Structure-activity relationships of 3-O-β-chacotriosyl oleanane-type triterpenoids as potential H5N1 entry inhibitors. Eur. J. Med. Chem. 2016, 119, 109–121. [Google Scholar] [CrossRef]
  9. Juang, Y.-P.; Liang, P.-H. Biological and pharmacological effects of synthetic saponins. Molecules 2020, 25, 4974. [Google Scholar] [CrossRef]
  10. Gauthier, C.; Legault, J.; Pichette, A. Recent progress in the synthesis of naturally occurring triterpenoid saponins. Mini Rev. Org. Chem. 2009, 6, 321–344. [Google Scholar] [CrossRef]
  11. Yang, Y.; Laval, S.; Yu, B. Chemical synthesis of saponins. In Horton DBT-A in CC and B; Academic Press: Cambridge, MA, USA, 2014; pp. 137–226. [Google Scholar]
  12. Liu, H.; Chou, G.-X.; Wu, T.; Guo, Y.-L.; Wang, S.-C.; Wang, C.-H.; Wang, Z.-T. Steroidal sapogenins and glycosides from the rhizomes of dioscorea bulbifera. J. Nat. Prod. 2009, 72, 1964–1968. [Google Scholar] [CrossRef] [PubMed]
  13. Osbourn, A.E. Saponins in cereals. Phytochemistry 2003, 62, 1–4. [Google Scholar] [CrossRef]
  14. Zhang, X.-M.; Li, X.-B.; Zhang, S.-S.; He, Q.-X.; Hou, H.-R.; Dang, L.; Guo, J.-L.; Chen, Y.-F.; Yu, T.; Peng, D.-J.; et al. LC-MS/MS identification of novel saponins from the viscera of sea cucumber apostichopus japonicus. Chem. Nat. Compd. 2018, 54, 721–725. [Google Scholar] [CrossRef]
  15. Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef] [Green Version]
  16. Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev. 2010, 9, 425–474. [Google Scholar] [CrossRef] [Green Version]
  17. Xu, X.-H.; Li, T.; Fong, C.M.V.; Chen, X.; Chen, X.-J.; Wang, Y.-T.; Huang, M.-Q.; Lu, J.-J. Saponins from Chinese medicines as anticancer agents. Molecules 2016, 21, 1326. [Google Scholar] [CrossRef] [Green Version]
  18. Gevrenova, R.; Weng, A.; Voutguenne-Nazabadioko, L.; Thakur, M.; Doytchinova, I. Quantitative structure–activity relationship study on saponins as cytotoxicity enhancers. Lett. Drug Des. Discov. 2015, 12, 166–171. [Google Scholar] [CrossRef] [Green Version]
  19. Xu, K.; Shu, Z.; Xu, Q.-M.; Liu, Y.-L.; Li, X.-R.; Wang, Y.-L.; Yang, S.-L. Cytotoxic activity of Pulsatilla chinensis saponins and their structure–activity relationship. J. Asian Nat. Prod. Res. 2013, 15, 680–686. [Google Scholar] [CrossRef]
  20. Nag, S.A.; Qin, J.; Wang, W.; Wang, M.-H.; Wang, H.; Zhang, R. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front. Pharmacol. 2012, 3, 25. [Google Scholar] [CrossRef] [Green Version]
  21. Liu, M.-J.; Wang, Z.; Ju, Y.; Wong, R.N.-S.; Wu, Q.-Y. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother. Pharmacol. 2005, 55, 79–90. [Google Scholar] [CrossRef]
  22. Bhuvanalakshmi, G.; Rangappa, K.S.; Dharmarajan, A.; Sethi, G.; Kumar, A.P.; Warrier, S. Breast cancer stem-like cells are inhibited by diosgenin, a steroidal saponin, by the attenuation of the Wnt β-catenin signaling via the Wnt antagonist secreted frizzled related protein-4. Front. Pharmacol. 2017, 8, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Si, L.; Zheng, L.; Xu, L.; Yin, L.; Han, X.; Qi, Y.; Xu, Y.; Wang, C.; Peng, J. Dioscin suppresses human laryngeal cancer cells growth via induction of cell-cycle arrest and MAPK-mediated mitochondrial-derived apoptosis and inhibition of tumor invasion. Eur. J. Pharmacol. 2016, 774, 105–117. [Google Scholar] [CrossRef]
  24. Zhao, X.; Tao, X.; Xu, L.; Yin, L.; Qi, Y.; Xu, Y.; Han, X.; Peng, J. Dioscin induces apoptosis in human cervical carcinoma hela and siha cells through ROS-mediated DNA damage and the mitochondrial signaling pathway. Molecules 2016, 21, 730. [Google Scholar] [CrossRef] [Green Version]
  25. Kim, E.-A.; Jang, J.-H.; Lee, Y.-H.; Sung, E.-G.; Song, I.-H.; Kim, J.-Y.; Kim, S.; Sohn, H.-Y.; Lee, T.-J. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells. Apoptosis 2014, 19, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
  26. Watanabe, S.; Suzuki, T.; Hara, F.; Yasui, T.; Uga, N.; Naoe, A. Polyphyllin D, a steroidal saponin in Paris polyphylla, induces apoptosis and necroptosis cell death of neuroblastoma cells. Pediatric Surg. Int. 2017, 33, 713–719. [Google Scholar] [CrossRef]
  27. Yang, C.; Cai, H.; Meng, X. Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells. Int. Immunopharmacol. 2016, 36, 17–22. [Google Scholar] [CrossRef]
  28. Gao, M.; Cheung, K.L.; Lau, I.P.; Yu, W.S.; Fung, K.P.; Yu, B.; Loo, J.F.; Kong, S.K. Polyphyllin D induces apoptosis in human erythrocytes through Ca 2+ rise and membrane permeabilisation. Arch. Toxicol. 2012, 86, 741–752. [Google Scholar] [CrossRef]
  29. Lee, M.-S.; Chan, J.Y.-W.; Kong, S.-K.; Yu, B.; Eng-Choon, V.O.; Nai-Ching, H.W.; Chung-Wai, T.M.; Fung, K.-P.; Yuet-Wa, J.C. Effects of polyphyllin D, a steroidal saponin inParis Polyphylla, in growth inhibition of human breast cancer cells and in xenograft. Cancer Biol. Ther. 2005, 4, 1248–1254. [Google Scholar] [CrossRef] [Green Version]
  30. Kanwal, N.; Rasul, A.; Hussain, G.; Anwar, H.; Shah, M.A.; Sarfraz, I.; Riaz, A.; Batool, R.; Shahbaz, M.; Hussain, A.; et al. Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food Chem. Toxicol. 2020, 143, 111570. [Google Scholar] [CrossRef]
  31. Yuan, B.; Yang, R.; Ma, Y.; Zhou, S.; Zhang, X.; Liu, Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. Pharm. Biol. 2017, 55, 620–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Wang, B.-F.; Wang, X.; Kang, H.-F.; Bai, M.-H.; Guan, H.-T.; Wang, Z.-W.; Zan, Y.; Song, L.-Q.; Min, W.-L.; Lin, S. Saikosaponin-D enhances radiosensitivity of hepatoma cells under hypoxic conditions by inhibiting hypoxia-inducible factor-1α. Cell Physiol Biochem. 2014, 33, 37–51. [Google Scholar] [CrossRef] [PubMed]
  33. Siu, F.-M.; Ma, D.-L.; Cheung, Y.-W.; Lok, C.-N.; Yan, K.; Yang, Z.; Yang, M.; Xu, S.; Ko, B.C.-B.; He, Q.-Y.; et al. Proteomic and transcriptomic study on the action of a cytotoxic saponin (Polyphyllin D): Induction of endoplasmic reticulum stress and mitochondria-mediated apoptotic pathways. Proteomics 2008, 8, 3105–3117. [Google Scholar] [CrossRef]
  34. Pan, H.-J.; Nie, X.-Q.; Liu, D.; Bian, K. Effects of four kinds of Chinese medicine monomer on growth of PANC-1 xenograft tumor and studying of molecular mechanism. China J. Chin. Mater. Med. 2013, 38, 245–248. [Google Scholar]
  35. Nho, K.J.; Chun, J.M.; Kim, H.K. Induction of mitochondria-dependent apoptosis in HepG2 human hepatocellular carcinoma cells by timosaponin A-III. Environ. Toxicol. Pharmacol. 2016, 45, 295–301. [Google Scholar] [CrossRef] [PubMed]
  36. Tsai, C.-H.; Yang, C.-W.; Wang, J.-Y.; Tsai, Y.-F.; Tseng, L.-M.; King, K.-L.; Chen, W.-S.; Chiu, J.-H.; Shyr, Y.-M. Timosaponin AIII suppresses hepatocyte growth factor-induced invasive activity through sustained ERK activation in breast cancer MDA-MB-231 Cells. Evid. Based Complement. Altern. Med. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
  37. Zhang, Y.; Fang, F.; Fan, K.; Zhang, Y.; Zhang, J.; Guo, H.; Yu, P.; Ma, J. Effective cytotoxic activity of OSW-1 on colon cancer by inducing apoptosis in vitro and in vivo. Oncol. Rep. 2017, 37, 3509–3519. [Google Scholar] [CrossRef] [Green Version]
  38. Malabed, R.; Hanashima, S.; Murata, M.; Sakurai, K. Interactions of OSW-1 with lipid bilayers in comparison with digitonin and soyasaponin. Langmuir 2020, 36, 3600–3610. [Google Scholar] [CrossRef]
  39. Kimura, M.; Sasaki, K.; Fukutani, Y.; Yoshida, H.; Ohsawa, I.; Yohda, M.; Sakurai, K. Anticancer saponin OSW-1 is a novel class of selective Golgi stress inducer. Bioorg. Med. Chem. Lett. 2019, 29, 1732–1736. [Google Scholar] [CrossRef] [PubMed]
  40. Wang, L.; Liu, C.; Zhou, C.; Zhuang, J.; Tang, S.; Yu, J.; Tian, J.; Feng, F.; Liu, L.; Zhang, T.; et al. Meta-analysis of the association between the dietary inflammatory index (DII) and breast cancer risk. Eur. J. Clin. Nutr. 2018, 73, 509–517. [Google Scholar] [CrossRef]
  41. Chen, M.; Ye, K.; Zhang, B.; **, L.; Sun, P.; Lin, L.; Ding, J. PE, a new sulfated saponin from sea cucumber, Exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol. Ther. 2005, 4, 874–882. [Google Scholar] [CrossRef] [Green Version]
  42. Li, Y.; Gu, J.-F.; Zou, X.; Wu, J.; Zhang, M.-H.; Jiang, J.; Qin, D.; Zhou, J.-Y.; Liu, B.-X.-Z.; Zhu, Y.-T.; et al. The anti-lung cancer activities of steroidal saponins of P. polyphylla Smith var. chinensis (Franch.) Hara through enhanced immunostimulation in experimental lewis tumor-bearing C57BL/6 mice and induction of apoptosis in the A549 cell line. Molecules 2013, 18, 12916–12936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Wang, N.; Wan, J.-B.; Chan, S.-W.; Deng, Y.-H.; Yu, N.; Zhang, Q.-W.; Wang, Y.-T.; Lee, S.-M. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion. Chin. Med. 2011, 6, 37. [Google Scholar] [CrossRef] [Green Version]
  44. Sun, L.; Lin, S.; Zhao, R.; Yu, B.; Yuan, S.; Zhang, L. The saponin monomer of dwarf lilyturf tuber, dt-13, reduces human breast cancer cell adhesion and migration during hypoxia via regulation of tissue factor. Biol. Pharm. Bull. 2010, 33, 1192–1198. [Google Scholar] [CrossRef] [Green Version]
  45. Lou, L.; Ye, W.; Chen, Y.; Wu, S.; **, L.; He, J.; Tao, X.; Zhu, J.; Chen, X.; Deng, A.; et al. Ardipusilloside inhibits survival, invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 2012, 19, 603–608. [Google Scholar] [CrossRef]
  46. Shuli, M.; Wenyuan, G.; Yanjun, Z.; Chaoyi, M.; Liu, Y.; Yiwen, L. Paridis saponins inhibiting carcinoma growth and metastasis In vitro and in vivo. Arch. Pharmacal Res. 2011, 34, 43–50. [Google Scholar] [CrossRef]
  47. Wang, P.; Cui, J.; Du, X.; Yang, Q.; Jia, C.; **ong, M.; Yu, X.; Li, L.; Wang, W.; Chen, Y.; et al. Panax notoginseng saponins (PNS) inhibits breast cancer metastasis. J. Ethnopharmacol. 2014, 154, 663–671. [Google Scholar] [CrossRef] [PubMed]
  48. Yoon, J.-H.; Choi, Y.-J.; Cha, S.-W.; Lee, S.-G. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation. Phytomedicine 2012, 19, 284–292. [Google Scholar] [CrossRef]
  49. Bauvois, B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta (BBA) Bioenerg. 2012, 1825, 29–36. [Google Scholar] [CrossRef]
  50. Man, S.; Gao, W.; Zhang, Y.; Yan, L.; Ma, C.; Liu, C.; Huang, L. Antitumor and antimetastatic activities of Rhizoma Paridis saponins. Steroids 2009, 74, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
  51. Park, S.K.; Hwang, Y.S.; Park, K.-K.; Park, H.-J.; Seo, J.Y.; Chung, W.-Y. Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt-and PKCδ-mediated signaling in MCF-7 human breast cancer cells. Car-cinogenesis 2009, 30, 1225–1233. [Google Scholar]
  52. Jung, S.-H.; Woo, M.-S.; Kim, S.-Y.; Kim, W.-K.; Hyun, J.-W.; Kim, E.-J.; Kim, D.-H.; Kim, H.-S. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int. J. Cancer 2006, 118, 490–497. [Google Scholar] [CrossRef] [PubMed]
  53. Liu, T.; Luan, X.; Zhao, J.; Li, W. Inhibitory effect of Trillium saponins on invasion and migration of HuH-7 cells by promoting human β defensin-2 expression. Chin. J. Cell Mol. Immunol. 2019, 35, 526–532. [Google Scholar]
  54. Kang, J.-H.; Han, I.-H.; Sung, M.-K.; Yoo, H.; Kim, Y.-G.; Kim, J.-S.; Kawada, T.; Yu, R. Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP-2. Cancer Lett. 2008, 261, 84–92. [Google Scholar] [CrossRef]
  55. Chen, P.-S.; Shih, Y.-W.; Huang, H.-C.; Cheng, H.-W. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. PLoS ONE 2011, 6, e20164. [Google Scholar] [CrossRef] [Green Version]
  56. Lu, K.V.; Jong, K.A.; Rajasekaran, A.K.; Cloughesy, T.F.; Mischel, P.S. Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and ce ll invasion in a human glioblastoma cell line. Lab. Investig. 2004, 84, 8–20. [Google Scholar] [CrossRef]
  57. Hu, C.-T.; Wu, J.-R.; Cheng, C.-C.; Wu, W.-S. The therapeutic targeting of HGF/c-met signaling in hepatocellular carcinoma: Alternative approaches. Cancers 2017, 9, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. Zhuang, M.; **n, G.; Wei, Z.; Li, S.; **ng, Z.; Ji, C.; Du, J.; Niu, H.; Huang, W. Dihydrodiosgenin inhibits endothelial cell-derived factor VIII and platelet-mediated hepatocellular carcinoma metastasis. Cancer Manag. Res. 2019, 11, 4871–4882. [Google Scholar] [CrossRef] [Green Version]
  59. Song, G.; Guo, S.; Wang, W.; Hu, C.; Mao, Y.; Zhang, B.; Zhang, H.; Hu, T. Intestinal Metabolite Compound K of Ginseng Saponin Potently Attenuates Metastatic Growth of Hepatocellular Carcinoma by Augmenting Apoptosis via a Bid-Mediated Mitochondrial Pathway. J. Agric. Food Chem. 2010, 58, 12753–12760. [Google Scholar] [CrossRef]
  60. Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Su, S.; Cheng, X.; Wink, M. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells. Phytomedicine 2015, 22, 301–307. [Google Scholar] [CrossRef]
  62. Wang, H.; Zhai, Z.; Li, N.; **, H.; Chen, J.; Yuan, S.; Wang, L.; Zhang, J.; Li, Y.; Yun, J.; et al. Steroidal saponin of Trillium tschonoskii. Reverses multidrug resistance of hepatocellular carcinoma. Phytomedicine 2013, 20, 985–991. [Google Scholar] [CrossRef]
  63. Li, Y.; Sun, Y.; Fan, L.; Zhang, F.; Meng, J.; Han, J.; Guo, X.; Zhang, D.; Zhang, R.; Yue, Z.; et al. Paris saponin VII inhibits growth of colorectal cancer cells through Ras signaling pathway. Biochem. Pharmacol. 2014, 88, 150–157. [Google Scholar] [CrossRef]
  64. Liu, Z.; Zheng, Q.; Chen, W.; Wu, M.; Pan, G.; Yang, K.; Li, X.; Man, S.; Teng, Y.; Yu, P.; et al. Chemosensitizing effect of Paris Saponin I on Camptothecin and 10-hydroxycamptothecin in lung cancer cells via p38 MAPK, ERK, and Akt signaling pathways. Eur. J. Med. Chem. 2017, 125, 760–769. [Google Scholar] [CrossRef]
  65. Jiang, Y.-X.; Yang, S.-W.; Li, P.-A.; Luo, X.; Li, Z.-Y.; Hao, Y.-X.; Yu, P.-W. The promotion of the transformation of quiescent gastric cancer stem cells by IL-17 and the underlying mechanisms. Oncogene 2017, 36, 1256–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  66. Singh, D.; Chaudhuri, P.K. Structural characteristics, bioavailability and cardioprotective potential of saponins. Integr. Med. Res. 2018, 7, 33–43. [Google Scholar] [CrossRef] [PubMed]
  67. Gao, S.; Basu, S.; Yang, Z.; Deb, A.; Hu, M. Bioavailability challenges associated with development of saponins as therapeutic and chemopreventive agents. Curr. Drug Targets 2012, 13, 1885–1899. [Google Scholar] [CrossRef] [PubMed]
  68. Yang, Z.; Gao, S.; Wang, J.; Yin, T.; Teng, Y.; Wu, B.; You, M.; Jiang, Z.; Hu, M. Enhancement of oral bioavailability of 20(S)-ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metab. Dispos. 2011, 39, 1866–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Tong, X.; Han, L.; Duan, H.; Cui, Y.; Feng, Y.; Zhu, Y.; Chen, Z.; Yang, S. The derivatives of Pulsatilla saponin A, a bioactive compound from Pulsatilla chinensis: Their synthesis, cytotoxicity, haemolytic toxicity and mechanism of action. Eur. J. Med. Chem. 2017, 129, 325–336. [Google Scholar] [CrossRef]
  70. Chwalek, M.; Lalun, N.; Bobichon, H.; Plé, K.; Voutquenne-Nazabadioko, L. Structure–activity relationships of some hed-eragenin diglycosides: Haemolysis, cytotoxicity and apoptosis induction. Biochim. Biophys. Acta. (BBA) General Subj. 2006, 1760, 1418–1427. [Google Scholar] [CrossRef]
  71. Vo, N.N.Q.; Fukushima, E.O.; Muranaka, T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J. Nat. Med. 2017, 71, 50–58. [Google Scholar] [CrossRef]
  72. Witthawaskul, P.; Panthong, A.; Kanjanapothi, D.; Taesothikul, T.; Lertprasertsuke, N. Acute and subacute toxicities of the saponin mixture isolated from Schefflera leucantha Viguier. J. Ethnopharmacol. 2003, 89, 115–121. [Google Scholar] [CrossRef]
  73. Liang, J.; **, W.; Li, H.; Liu, H.; Huang, Y.; Shan, X.; Li, C.; Shan, L.; Efferth, T. In vivo cardiotoxicity induced by sodium aescinate in Zebrafish larvae. Molecules 2016, 21, 190. [Google Scholar] [CrossRef] [Green Version]
  74. Oleszek, W.; Junkuszew, M.; Stochmal, A. Determination and toxicity of saponins from Amaranthus cruentus seeds. J. Agric. Food Chem. 1999, 47, 3685–3687. [Google Scholar] [CrossRef]
  75. Qin, Y.; Wu, X.; Huang, W.; Gong, G.; Li, D.; He, Y.; Zhao, Y. Acute toxicity and sub-chronic toxicity of steroidal saponins from Dioscorea zingiberensis CH Wright in rodents. J. Ethnopharmacol. 2009, 126, 543–550. [Google Scholar] [CrossRef]
  76. Hassan, S.; Haq, A.; Byrd, J.; Berhow, M.; Cartwright, A.; Bailey, C. Haemolytic and antimicrobial activities of saponin-rich extracts from guar meal. Food Chem. 2010, 119, 600–605. [Google Scholar] [CrossRef]
  77. Yang, Z.-G.; Sun, H.-X.; Fang, W.-H. Haemolytic activities and adjuvant effect of Astragalus membranaceus saponins (AMS) on the immune responses to ovalbumin in mice. Vaccine 2005, 23, 5196–5203. [Google Scholar] [CrossRef] [PubMed]
  78. Akbal, O.; Vural, T.; Malekghasemi, S.; Bozdoğan, B.; Denkbaş, E.B. Saponin loaded montmorillonite-human serum albumin nanocomposites as drug delivery system in colorectal cancer therapy. Appl. Clay Sci. 2018, 166, 214–222. [Google Scholar] [CrossRef]
  79. Wang, Y.; Shen, J.; Yang, X.; **, Y.; Yang, Z.; Wang, R.; Zhang, F.; Linhardt, R.J. Mechanism of enhanced oral absorption of akebia saponin D by a self-nanoemulsifying drug delivery system loaded with phospholipid complex. Drug Dev. Ind. Pharm. 2018, 45, 124–129. [Google Scholar] [CrossRef] [PubMed]
  80. Cao, X.-W.; Wang, F.-J.; Liew, O.-W.; Lu, Y.-Z.; Zhao, J. Analysis of triterpenoid saponins reveals insights into structural features associated with potent protein drug enhancement effects. Mol. Pharm. 2020, 17, 683–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  81. Santana-Davila, R.; Devisetty, K.; Szabo, A.; Sparapani, R.; Arce-Lara, C.; Gore, E.M.; Moran, A.; Williams, C.D.; Kelley, M.; Whittle, J. Cisplatin and etoposide versus carboplatin and paclitaxel with concurrent radiotherapy for stage III non–small-cell lung cancer: An analysis of veterans health administration data. J. Clin. Oncol. 2015, 33, 567–574. [Google Scholar] [CrossRef]
  82. Zhao, P.; Song, S.; Du, L.; Zhou, G.; Ma, S.; Li, J.; Feng, J.; Zhu, X.; Jiang, H. Paris Saponins enhance radiosensitivity in a ge-fitinib-resistant lung adenocarcinoma cell line by inducing apoptosis and G2/M cell cycle phase arrest. Mol. Med. Rep. 2016, 13, 2878–2884. [Google Scholar] [CrossRef]
  83. Chae, S.; Kang, K.A.; Chang, W.Y.; Kim, M.J.; Lee, S.J.; Lee, Y.S.; Kim, H.S.; Kim, N.H.; Hyun, J.W. Effect of compound K, a metabolite of ginseng saponin, combined with γ-Ray radiation in human lung cancer cells in vitro and in vivo. J. Agric. Food Chem. 2009, 57, 5777–5782. [Google Scholar] [CrossRef]
  84. Koczurkiewicz, P.; Klaś, K.; Grabowska, K.; Piska, K.; Rogowska, K.; Wójcik-Pszczoła, K.; Podolak, I.; Galanty, A.; Michalik, M.; Pękala, E.; et al. Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug—Minireview of in vitro studies. Phyther. Res. 2019, 33, 2141–2151. [Google Scholar] [CrossRef]
  85. Baharara, J.; Amini, E.; Nikdel, N.; Salek-Abdollahi, F. The cytotoxicity of dacarbazine potentiated by sea cucumber saponin in resistant B16F10 melanoma cells through apoptosis induction. Avicenna J. Med. Biotechnol. 2016, 8, 112–119. [Google Scholar]
Figure 1. Representative sapogenin structure of triterpenoid saponins.
Figure 1. Representative sapogenin structure of triterpenoid saponins.
Pathophysiology 28 00017 g001
Figure 2. Representative sapogenin structure of steroid saponins.
Figure 2. Representative sapogenin structure of steroid saponins.
Pathophysiology 28 00017 g002
Figure 3. Anticancer effects of saponins.
Figure 3. Anticancer effects of saponins.
Pathophysiology 28 00017 g003
Figure 4. Cell-death mechanisms of saponins.
Figure 4. Cell-death mechanisms of saponins.
Pathophysiology 28 00017 g004
Table 1. Anticancer activities of saponins and sapogenins.
Table 1. Anticancer activities of saponins and sapogenins.
CompoundCells/Tissue TypeMolecular TargetReferences
DiosgeninMCF-7, breast cancerThe activation of p53, disruption of intracellular Ca2+ homeostasis, generation of ROS and caspase activation[21,22]
DioscinLeukemia, lung cancer, gastric carcinoma, hepatocellular carcinoma, cervical cancer, breast cancerUpregulates FADD, p53, Bid and Bax.
Downregulates CDK2,Bcl-2,
Clap-1 and Mcl-1
[23,24,25]
Polyphyllin DOvarian cancer, cervical cancer, breast cancer, glioblastoma, gliomaUpregulates p53, p21, PDI and JNX.
Downregulates CDK1, Bcl-2, HIF- and VEGF
[26,27,28,29]
OleandrinPancreatic cancer, prostate cancer, breast cancer, lymphoma, melanoma, osteosarcomaUpregulates Akt, ERK and ROS.
Downregulates NF-κB, MAPK,
JNK, pS6,
p4EPB1, PI3K/Akt and mTOR.
[30]
Ginsenoside Rg3Lung cancer, esophageal carcinoma, gastric cancer, colon cancer, hepatoma, renal cancer, bladder cancer, breast cancer, ovarian cancer, prostate cancer and melanomaUpregulates p63,p21, Bax and Smac
Downregulates VEGF, p38 and P13K,
[17]
Ginsenoside Rh2Leukemia, colon cancer, hepatocellular carcinoma, breast cancer, ovarian cancer, prostate cancerUpregulates p53, p21, p27 and p16
Downregulates AKT, CDK4, CDK6 and AP-1.
[17]
Saikosaponin AHepatocellular carcinoma, breast cancer, colon cancerUpregulates p15, p16, ERK and cleaved-PARP
Downregulates Bcl-2, XIAP, Clap2 and Pgp
[31]
Saikosaponin DLung cancer, hepatocellular carcinoma, prostate cancer, thyroid cancerUpregulates p53, p21, Fas and Bax,
Downregulates Bcl-2, CDK2, COX-2 and STAT3
[32]
Polyphyllin D Human non-small-cell lung cancer NCI-H460 cell line.ER stress-mediated apoptosis, induction of tumor suppressor p53, disruption of mitochondrial membrane and activation of caspase-9 and caspase-3 [33]
Timosaponin AIII (TAIII) Breast, prostate, HepG2, pancreatic and osteosarcoma cancer cells. PANC-1 cell xenograft nude mice model ER stress induction, activation of caspase-3, downregulation of Bcl-2, X-linked inhibitor of apoptosis protein (XIAP), Mcl-1 and IAPs, induction of cytochrome c and stimulation of caspases 3, 7, 8 and 9 [34,35,36]
OSW-1(3β,16β,17α-trihydroxycholest-5-en-22-one16- O -(2- O -4-methoxybenzoyl-β- D -xylopyranosyl)-(1→3)-(2- O -acetyl-α- L -arabinopyranoside)Leukemia cancer and pancreatic cancer cellsMitochondria membrane permeabilization. Intrinsic apoptosis. Calcium-dependent GRP78 (survival factor) cleavage. Binding to oxysterol binding protein to activate the Golgi stress response leading to apoptosis[37,38,39]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in Cancer Treatment: Current Progress and Future Prospects. Pathophysiology 2021, 28, 250-272. https://doi.org/10.3390/pathophysiology28020017

AMA Style

Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. Saponins in Cancer Treatment: Current Progress and Future Prospects. Pathophysiology. 2021; 28(2):250-272. https://doi.org/10.3390/pathophysiology28020017

Chicago/Turabian Style

Elekofehinti, Olusola Olalekan, Opeyemi Iwaloye, Femi Olawale, and Esther Opeyemi Ariyo. 2021. "Saponins in Cancer Treatment: Current Progress and Future Prospects" Pathophysiology 28, no. 2: 250-272. https://doi.org/10.3390/pathophysiology28020017

Article Metrics

Back to TopTop