Next Article in Journal
Fatigue and Fracture Behaviors of Short Carbon Fiber Reinforced Squeeze Cast AZ91 at 20 °C and 250 °C
Next Article in Special Issue
Crystal Chemistry and Structural Complexity of the Uranyl Molybdate Minerals and Synthetic Compounds
Previous Article in Journal
Numerical/Experimental Study of Process Optimization Conducted on an Al-Cu Alloy Produced by Combined Fields of Applied Pressure and Ultrasonic Vibration
Previous Article in Special Issue
Hydrothermal Synthesis and Crystal Structure of Vesuvianite Compounds, Ca19Al13Si18O71(OH)7 and Sr19Fe12Ge19O72(OH)6
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits

School of Gemology, China University of Geosciences (Bei**g), No. 29 Xueyuan Road, Haidian District, Bei**g 100083, China
*
Author to whom correspondence should be addressed.
Crystals 2023, 13(10), 1468; https://doi.org/10.3390/cryst13101468
Submission received: 12 September 2023 / Revised: 30 September 2023 / Accepted: 2 October 2023 / Published: 8 October 2023
(This article belongs to the Special Issue Mineralogical Crystallography (3rd Edition))

Abstract

:
The Chuncheon nephrite deposit in South Korea is one of the major nephrite deposits in the world, but its origin has been rarely studied. This study explores the mineralogical and geochemical characteristics of the Chuncheon nephrite using a polarizing microscope, an electron microprobe, laser ablation, inductively coupled plasma mass spectrometry, and hydrogen–oxygen isotope analyses and compares them with dolomite-related nephrite worldwide. The main mineral of Chuncheon nephrite is tremolite, which has a felted blastic texture, secondary filling texture, and metasomatic pseudomorphic texture that nephrites from other regions do not have. Chuncheon nephrite is dolomite-related; the total content of rare earth elements is generally low, with highly variable positive and negative Eu anomalies and weak positive Ce anomalies; and the light rare earth elements are enriched. The Chuncheon nephrite formed in an anaerobic alkaline environment with a low degree of mineralization, and the hydrothermal fluids are predominantly meteoric water. Nephrite from different regions has different geochemical characteristics as well as different abundances of rare earth element contents. According to the content and range of elements, such as δCe, δEu, ΣREE, (La/Sm)N, and other rare earth elements, dolomite-type nephrite from different origins can be roughly distinguished.

1. Introduction

Nephrite is a mineral aggregate that is mainly composed of tremolite and actinolite, and it has an important position in the world of non-metallic minerals. Nephrite deposits are widely distributed worldwide in several countries, such as Russia [1,2,3], Poland [4,5], Italy [6], Canada [7,8,9,10], Australia [11,12], South Korea [13,14,15,16,17,18,19,20,21,22,23,24,25,26], and China [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46]. The nephrite deposit is located in the east of Chuncheon, South Korea, and is one of the largest nephrite deposits in the world. Nephrite deposit types can be classified as dolomite- or serpentine-related according to their genesis [10,47]. Dolomite-related nephrite mainly forms in the contact zone between dolomite and magmatic rock. The intrusive rocks of dolomite-related nephrite deposits are acidic magmatic rocks, such as in Russia [1,3], Canada [8,10], and Heilongjiang, China [45]; moderately acidic magmatic rocks, such as in Liaoning, China [7,35,36] and ** distribution pattern of REEs indicate that the Chuncheon nephrite is dolomite-related nephrite. Its green color deepens with increasing Fe2+ content. The low Al2O3 and Na2O + K2O contents indicate that the Chuncheon nephrite formed at low temperatures. The U/Th and Sr/Ba ratios indicate that the Chuncheon nephrite formed in an anaerobic alkaline environment. Moreover, the Rb/Sr ratio indicates its low mineralization. The hydrogen and oxygen isotope contents indicate that the Chuncheon nephrite mineralizing fluid was atmospheric water.
(3) Compared to other dolomite-related nephrites, Chuncheon nephrite has lower Na2O + K2O + CaO wt% (11.34–13.43 wt%) and higher SiO2 wt% (56.95–61.30 wt%). Consequently, it can be distinguished from nephrites from other geographic origins using Na2O + K2O + CaO wt% and SiO2 wt% map partitioning. The Cr content of Chuncheon nephrite is lower than that of other dolomite-related nephrites in terms of the trace elements. In terms of REEs, the Chuncheon nephrite LREEs are highly differentiated and higher than those of nephrites from other geographic origins, with lower and less fluctuating values of PrN (0.50–1.08), NdN (0.33–0.93), SmN (0.04–0.84), YbN (0.11–0.44), and DyN (0.004–0.047). The PrN–SmN, NdN–YbN, NdN–SmN, and NdN–DyN cast diagrams were used to distinguish Chuncheon nephrite from other dolomite-related nephrites. In terms of the hydrogen and oxygen isotopes, the δ18O and δD contents of Chuncheon nephrite are lower than those of dolomite-related nephrites from other geographic origins. The in δ18O and δD projection map partitioning was used to distinguish Chuncheon nephrite from dolomite-related nephrites from other geographic origins.

Author Contributions

Data curation, M.L.; writing—original draft preparation, N.L. and Q.P.; supervision, F.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No data was used for the research described in the article.

Acknowledgments

We thank the Institute of Geology and Geophysics of the Chinese Academy of Sciences for its help in sample testing.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. Burtseva, M.; Ripp, G.; Posokhov, V.; Murzintseva, A. Nephrites of East Siberia: Geochemical features and problems of genesis. Russ. Geol. Geophys. 2015, 56, 402–410. [Google Scholar] [CrossRef]
  2. Liu, X.F. Gemological and Mineralogical Study of White Nephrite from Dakeximu Region in Russia. Master’s Thesis, China University of Geosciences (Bei**g), Bei**g, China, 2010. (In Chinese with English Abstract). [Google Scholar]
  3. Zhang, X.H.; Wu, R.H.; Wang, L.H. Research on Petrologic Character of Nephrite Jade from Baikal Lake Region in Russia. J. Gems Gemol. 2001, 1, 12–17. [Google Scholar]
  4. Gil, G. Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland). Geol. Q. 2013, 57, 3. [Google Scholar] [CrossRef]
  5. Gil, G.; Barnes, J.D.; Boschi, C.; Gunia, P.; Raczyński, P.; Szakmány, G.; Bendő, Z.; Péterdi, B. Nephrite from Złoty Stok (Sudetes, SW Poland): Petrological, geochemical, and isotopic evidence for a dolomite-related origin. Can. Mineral. 2015, 53, 533–556. [Google Scholar] [CrossRef]
  6. Adamo, I.; Bocchio, R. Nephrite jade from Val Malenco, Italy: Review and update. J. Gems Gemol. 2013, 49, 98–106. [Google Scholar] [CrossRef]
  7. Zhang, Z.W.; Xu, Y.C.; Cheng, H.S.; Gan, F.X. Comparison of trace elements analysis of nephrite samples from different deposits by PIXE and ICP-AES. X-ray Spectrom. 2012, 41, 367–370. [Google Scholar] [CrossRef]
  8. Morin, J. The salish nephrite/jade industry: Ground stone celt production in British Columbia, Canada. Lithic Technol. 2016, 41, 39–59. [Google Scholar] [CrossRef]
  9. Jiang, B.H.; Bai, F.; Zhao, J.K. Mineralogical and geochemical characteristics of green nephrite from Kutcho, northern British Columbia, Canada. Lithos 2021, 388, 106030. [Google Scholar] [CrossRef]
  10. Leaming, S.F. Jade in Canada; Department of Energy, Mines and Resources: Ottawa, ON, Canada, 1978; ISBN 0660100614. [Google Scholar]
  11. Tan, T.L.; Ng, L.L.; Lim, L.C. Studies on nephrite and jadeite jades by Fourier transform infrared (FTIR) and Raman spectroscopic techniques. Cosmos 2013, 9, 47–56. [Google Scholar] [CrossRef]
  12. Liu, X.F.; Zhang, H.Q.; Liu, Y.; Zhang, Y.; Li, Z.J.; Zhang, J.H.; Zheng, F. Mineralogical Characteristics and Genesis of Green Nephrite from the World. Rock Miner. Anal. 2018, 37, 479–489, (In Chinese with English Abstract). [Google Scholar]
  13. Noh, J.H.; Yu, J.Y.; Choi, J.B. Genesis of nephrite and associated calc-silicate minerals in Chuncheon area. J. Geol. Soc. Korea 1993, 29, 199–224, (In Korean with English Abstract). [Google Scholar]
  14. Park, K.H.; Noh, J.H. Geochemical Study on the Genesis of Chuncheon Nephrite Deposit. J. Korean Chem. Soc. 2000, 9, 53–69, (In Korean with English Abstract). [Google Scholar]
  15. Pei, X.X. Study on the Chuncheon Nephrite Deposit, Korea-Analysis on the Mineralization and Genesis. Master’s Thesis, China University of Geosciences (Bei**g), Bei**g, China, 2012. (In Chinese with English Abstract). [Google Scholar]
  16. Pei, X.X.; Qian, Z.J.; Shi, G.H. A mineralogical study of the Chuncheon nephrite, South Korea. Acta Petrol. Mineral. 2011, 90, 89–94, (In Chinese with English Abstract). [Google Scholar]
  17. Yui, T.F.; Kwon, S.T. Origin of a dolomite-related jade deposit at Chuncheon, Korea. Econ. Geol. 2002, 97, 593–601. [Google Scholar] [CrossRef]
  18. Bai, F.; Zhao, K. Gemological and structural characteristics of nephrite from South Korea. Acta Petrol. Mineral. 2011, 30, 83–88. [Google Scholar]
  19. Feng, Y.H.; He, X.M.; **, Y.T. A new model for the formation of nephrite deposits: A case study of the Chuncheon nephrite deposit, South Korea. Ore Geol. Rev. 2022, 141, 104655. [Google Scholar]
  20. Hou, H.; Wang, Y.; Liu, X.F. Study of gemological characteristics of Korea nephrite jade. Northwest. Geol. 2010, 43, 147–153, (In Chinese with English Abstract). [Google Scholar]
  21. Kim, S.J.; Lee, D.J.; Chang, S.W. A mineralogical and gemological characterization of the Korean jade from Chuncheon, Korea. J. Petrol. Soc. Korea 1986, 22, 278–288, (In Korean with English Abstract). [Google Scholar]
  22. Zhao, K. Gemological and Mineralogical Study of Nephrite in South Korea. Master’s Thesis, China University of Geosciences (Bei**g), Bei**g, China, 2010. (In Chinese with English Abstract). [Google Scholar]
  23. Cho, D.L.; Suzuki, K.; Adachi, M.; Chwae, U. A preliminary CHIME age determination of monazite from metamorphic and granitic rocks in the Gyeonggi massif, Korea. J. Earth Planet. Sci. Nagoya Univ. 1996, 43, 49–65. [Google Scholar]
  24. Ling, X.X.; Schmädicke, E.; Wu, R.; Wang, S.; Gose, J. Composition and distinction of white nephrite from Asian deposits. J. Mineral Geochem. 2013, 190, 49–65. [Google Scholar] [CrossRef]
  25. Yang, T.T.; Wang, X.; Huang, B.; Zang, Z.Y.; Wang, J.; Yan, S.H. Origin identification of white nephrite based on terahertz time-domain spectroscopy. Acta Petrol. Mineral. 2020, 39, 314–322, (In Chinese with English Abstract). [Google Scholar]
  26. Luo, Z.; Yang, M.; Shen, A.H. Origin Determination of Dolomite-Related White Nephrite through Iterative-Binary Linear Discriminant Analysis. J. Gems Gemol. 2015, 51, 300–311. [Google Scholar] [CrossRef]
  27. Zhong, Q.; Liao, Z.T.; Qi, L.J.; Zhou, Z.Y. Black Nephrite Jade from Guangxi, Southern China. J. Gems Gemol. 2019, 55, 198–215. [Google Scholar] [CrossRef]
  28. Bai, F.; Du, J.M.; Li, J.J.; Jiang, B.H. Mineralogy, geochemistry, and petrogenesis of green nephrite from Dahua, Guangxi, Southern China. Ore Geol. Rev. 2020, 118, 103362. [Google Scholar] [CrossRef]
  29. Peng, F.; Zhao, Q.H.; Pei, L.; Wang, C.; Yin, Z.W. Study of mineralogical and spectroscopic characteristics of black nephrite from Dahua in Guangxi. Spectrosc. Spect. Anal. 2017, 37, 2237–2241. [Google Scholar]
  30. Jiang, C.; Peng, F.; Wang, W.; Yin, Z. Comparative Study on Spectroscopic Characteristics and Coloration Mechanism of Nephrite From Dahua and Luodian. Spectrosc. Spect. Anal. 2021, 41, 1294–1299. [Google Scholar]
  31. Li, N.; Bai, F.; Xu, L.L.; Che, Y.D. Geochemical characteristics and ore-forming mechanism of Luodian nephrite deposit, Southwest China and comparison with other nephrite deposits in Asia. Ore Geol. Rev. 2023, 160, 105604. [Google Scholar] [CrossRef]
  32. Zhang, Y.D. Study on Geologic-Geochemical Property and Metallogenic Regularity of Nephritic Ore in Luodian County, Guizhou Province. Master’s Thesis, Guizhou University, Guiyang, China, 2015. (In Chinese with English Abstract). [Google Scholar]
  33. Yang, H. A Comparative Study of Three Typical Nephrites—Taking the Examples of Guizhou Luodian Jade, Qinghai Jade and Korean Nephrite. Master’s Thesis, China University of Geosciences (Bei**g), Bei**g, China, 2019. (In Chinese with English Abstract). [Google Scholar]
  34. Bai, F.; Li, G.M.; Lei, J.; Sun, J.X. Mineralogy, geochemistry, and petrogenesis of nephrite from Panshi, Jilin, Northeast China. Ore Geol. Rev. 2019, 115, 103171. [Google Scholar] [CrossRef]
  35. Zhang, C.; Yu, X.Y.; Jiang, T.L. Mineral association and graphite inclusions in nephrite jade from Liaoning, northeast China: Implications for metamorphic conditions and ore genesis. Geosci. Front. 2019, 10, 425–437. [Google Scholar] [CrossRef]
  36. Wang, S.Q.; Duan, T.Y.; Zheng, Z.Z. Mineralogical and petrological characteristics of **uyan nephrite and its minerogenetic model. Acta Petrol. Mineral. 2002, 21, 79–90, (In Chinese with English Abstract). [Google Scholar]
  37. Yu, H.Y.; Jia, Z.Y.; Lei, W. Study on Geochemical Characteristics and Influencing Factors of Rare Earth Elements in Chinese Nephrite. Mod. Min. 2019, 3, 13–17. [Google Scholar] [CrossRef]
  38. Yu, H.Y.; Wang, R.C.; Guo, J.C.; Li, J.G.; Yang, X.W. Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China. Sci. China Earth Sci. 2016, 59, 1597–1609. [Google Scholar] [CrossRef]
  39. Liu, Y.; Deng, J.; Shi, G.H.; Lu, T.; He, H.Y.; Ng, Y.N.; Shen, C.H.; Yang, L.; Wang, Q. Chemical zone of nephrite in Alamas, **njiang, China. Resour. Geol. 2010, 60, 249–259. [Google Scholar] [CrossRef]
  40. Liu, Y.; Deng, J.; Shi, G.H.; Sun, X.; Yang, L. Geochemistry and petrogenesis of placer nephrite from Hetian, **njiang, Northwest China. Ore Geol. Rev. 2011, 41, 122–132. [Google Scholar] [CrossRef]
  41. Liu, Y.; Deng, J.; Shi, G.H.; Yui, T.F.; Zhang, G.; Abuduwayiti, M.; Yang, L.; Sun, X. Geochemistry and petrology of nephrite from Alamas, **njiang, NW China. J. Asian Earth Sci. 2011, 42, 440–451. [Google Scholar] [CrossRef]
  42. Liu, S.W.; Lü, Y.J.; Wang, W.; Yang, P.T.; Bai, X.; Feng, Y.G. Petrogenesis of the Neoarcheangranitoid gneisses in northern Hebei Province. Acta Petrol. Sin. 2011, 27, 909–921, (In Chinese with English Abstract). [Google Scholar]
  43. Chen, D.; Pan, M.; Huang, W.; Luo, W.G.; Wang, C.S. The provenance of nephrite in China based on multi-spectral imaging technology and gray-level co-occurrence matrix. Anal. Methods 2018, 10, 4053–4062. [Google Scholar] [CrossRef]
  44. Liu, F.; Yu, X.Y. Classification and mineralogical characteristics of nephrite deposits in China. Miner. Resour. Geol. 2009, 23, 375–380, (In Chinese with English Abstract). [Google Scholar]
  45. Gao, S.J.; Bai, F.; Heide, G. Mineralogy, geochemistry and petrogenesis of nephrite from Tieli, China. Ore Geol. Rev. 2019, 107, 155–171. [Google Scholar] [CrossRef]
  46. Yin, Z.W.; Jiang, C.; Santosh, M.; Chen, Y.M.; Bao, Y.; Chen, Q.L. Nephrite jade from Guangxi Province, China. J. Gems Gemol. 2014, 20, 228–235. [Google Scholar] [CrossRef]
  47. Harlow, G.; Sorensen, S.S. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. Int. Geol. Rev. 2005, 47, 113–146. [Google Scholar] [CrossRef]
  48. Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
  49. Godfrey, J.D. The deuterium content of hydrous minerals from the east-central Sierra Nevada and Yosemite National Park. Geochim. Cosmochim. Acta 1962, 26, 1215–1245. [Google Scholar] [CrossRef]
  50. Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. Dev. Geochem. 1984, 2, 63–114. [Google Scholar] [CrossRef]
  51. McDonough, W.; Sun, S.S.; Ringwood, A.; Jagoutz, E.; Hofmann, A. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 1992, 56, 1001–1012. [Google Scholar] [CrossRef]
  52. Graham, C.M.; Harmon, R.S.; Sheppard, S.M. Experimental hydrogen isotope studies: Hydrogen isotope exchange between amphibole and water. Am. Mineral. 1984, 69, 128–138. [Google Scholar]
  53. Zheng, Y.F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. 1993, 120, 247–263. [Google Scholar] [CrossRef]
  54. Zhao, Y.H.; Yang, J.Y.; Wang, H.; **e, Y.Q.; Li, J.X. Hydrogen and oxygen isotope distribution characteristics of geothermal water. Prog. Geophys. 2017, 32, 2415–2423. [Google Scholar] [CrossRef]
  55. Zhang, Z.W.; Gan, F.X.; Cheng, H.S. PIXE analysis of nephrite minerals from different deposits. Nucl. Instrum. Meth. B 2011, 269, 460–465. [Google Scholar] [CrossRef]
  56. Yu, P.H.; Ma, J.L.; Liao, J.B.; Li, Z.Y.; Di, J. Geochemistry and paleoenvironment significance of Lulehe Formation **aganchaigou Formation located in the north area of Qaidam Basin. Arid Land Geogr. 2020, 43, 679–686, (In Chinese with English Abstract). [Google Scholar]
  57. Imeokparia, E.G. Ba/Rb and Rb/Sr ratios as indicators of magmatic fractionation, postmagmatic alteration and mineralization Afu Younger Granite Complex, Northern Nigeria. Geochem. J. 1981, 15, 209–219. [Google Scholar] [CrossRef]
  58. Tang, J.; Zheng, Y.F.; Wu, Y.B.; Zha, X.P.; Zhou, J.B. Zircon U-Pb ages and oxygen isotopes of high-grade metamorphic rocks in the eastern part of the Shandong Peninsula. Acta Petrol. Sin. 2004, 20, 1039–1062, (In Chinese with English Abstract). [Google Scholar]
  59. Wang, Y. Metamorphic and Deformation Characteristics in Northwest Yunnan Province of Nu River Chongshan Group Metamorphic Complex. Master’s Thesis, Guilin University of Technology, Guilin, China, 2018. (In Chinese with English Abstract). [Google Scholar]
Figure 1. Simplified geologic map of the region and location of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Figure 1. Simplified geologic map of the region and location of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Crystals 13 01468 g001
Figure 2. Schematic cross section of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Figure 2. Schematic cross section of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Crystals 13 01468 g002
Figure 3. Pictures of hand specimens of nephrite from the Chuncheon deposit.
Figure 3. Pictures of hand specimens of nephrite from the Chuncheon deposit.
Crystals 13 01468 g003
Figure 4. Microtexture of the Chuncheon nephrite. (ad) Tremolite has a felt-like fibroblastic texture. (e,f) early calcite or dolomite particles replaced by late tremolite (based on the pseudomorphic metasomatic texture). (g,h) microfractures in nephrite filled with iron impurities. Tr: tremolite.
Figure 4. Microtexture of the Chuncheon nephrite. (ad) Tremolite has a felt-like fibroblastic texture. (e,f) early calcite or dolomite particles replaced by late tremolite (based on the pseudomorphic metasomatic texture). (g,h) microfractures in nephrite filled with iron impurities. Tr: tremolite.
Crystals 13 01468 g004
Figure 5. (a) Chondrite-normalized REE patterns of selected samples. (b) Primitive mantle-normalized trace element diagrams of selected samples.
Figure 5. (a) Chondrite-normalized REE patterns of selected samples. (b) Primitive mantle-normalized trace element diagrams of selected samples.
Crystals 13 01468 g005
Figure 6. δD and δ18OH2O compositions of the hydrothermal fluids during the formation of the Chuncheon nephrite.
Figure 6. δD and δ18OH2O compositions of the hydrothermal fluids during the formation of the Chuncheon nephrite.
Crystals 13 01468 g006
Figure 7. Comparison of the main elemental characteristics of dolomite-related nephrite from different geographic origins. (a) MgO wt% and CaO wt%; (b) Al2O3 wt% and Na2O + K2O wt%; (c) MgO wt% and FeO wt%; (d) SiO2 wt% and Na2O + K2O + CaO wt%. KC—Chuncheon, Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Figure 7. Comparison of the main elemental characteristics of dolomite-related nephrite from different geographic origins. (a) MgO wt% and CaO wt%; (b) Al2O3 wt% and Na2O + K2O wt%; (c) MgO wt% and FeO wt%; (d) SiO2 wt% and Na2O + K2O + CaO wt%. KC—Chuncheon, Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Crystals 13 01468 g007
Figure 8. (a) Comparison of the Cr and Ni content of dolomite-related nephrite from different geographic origins. (b) Zoomed-in version of Figure 8a. KC—Chuncheon, Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Figure 8. (a) Comparison of the Cr and Ni content of dolomite-related nephrite from different geographic origins. (b) Zoomed-in version of Figure 8a. KC—Chuncheon, Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Crystals 13 01468 g008
Figure 9. (a) Comparison of ΣREE and LREE/HREE for nephrite from different geographic origins. (b) The ΣREE and LREE/HREE content of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 9. (a) Comparison of ΣREE and LREE/HREE for nephrite from different geographic origins. (b) The ΣREE and LREE/HREE content of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g009
Figure 10. (a) Comparison of δEu and δCe values of nephrite from different geographic origins. (b) The δEu and δCe values of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 10. (a) Comparison of δEu and δCe values of nephrite from different geographic origins. (b) The δEu and δCe values of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g010
Figure 11. Comparison of REE characteristics of nephrite from different geographic origins. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 11. Comparison of REE characteristics of nephrite from different geographic origins. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g011
Figure 12. Identification of nephrite geographic origins using REEs.
Figure 12. Identification of nephrite geographic origins using REEs.
Crystals 13 01468 g012
Figure 13. Comparison of the standardization of REEs of different geographic origins. (a) PrN–SmN; (b) NdN–YbN; (c) NdN–SmN; (d) NdN–DyN. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 13. Comparison of the standardization of REEs of different geographic origins. (a) PrN–SmN; (b) NdN–YbN; (c) NdN–SmN; (d) NdN–DyN. KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g013
Figure 14. Hydrogen and oxygen isotope content characteristics of dolomite-related nephrite from different geographic origins. KC—Chuncheon, Korea; NE—Chuncheon, Korea [17]; CA—Cowell, Australia; WU—Wyoming, USA; TC—Kunlun Mountains, China; ZS—Złoty Stok, Poland; XA—Alamas, **njiang.
Figure 14. Hydrogen and oxygen isotope content characteristics of dolomite-related nephrite from different geographic origins. KC—Chuncheon, Korea; NE—Chuncheon, Korea [17]; CA—Cowell, Australia; WU—Wyoming, USA; TC—Kunlun Mountains, China; ZS—Złoty Stok, Poland; XA—Alamas, **njiang.
Crystals 13 01468 g014
Table 1. Chemical composition analysis (EMPA) of tremolite in the Chuncheon nephrite (wt%).
Table 1. Chemical composition analysis (EMPA) of tremolite in the Chuncheon nephrite (wt%).
SamplesKC1-1KC1-2KC1-3KC1-4KC1-5KC1-6KC1-7KC1-8KC1-9KC2-1KC2-2KC2-3KC2-4KC2-5KC2-6KC2-7KC2-8KC3-1
Na2O0.0230.0280.0530.0270.0640.1980.0440.0450.0710.1120.1060.040.0290.8620.070.0610.0650.074
Cr2O30.006 0.000 0.000 0.000 0.006 0.000 0.003 0.001 0.000 0.000 0.006 0.006 0.000 0.000 0.000 0.005 0.019 0.000
K2O0.032 0.032 0.032 0.011 0.031 0.070 0.035 0.011 0.082 0.075 0.033 0.026 0.056 0.097 0.026 0.040 0.014 0.087
MgO23.982 24.066 23.970 23.686 23.714 22.518 23.902 24.077 23.425 23.486 23.229 23.371 23.939 23.728 23.518 23.903 23.711 24.371
MnO0.141 0.083 0.083 0.114 0.130 0.133 0.150 0.111 0.165 0.146 0.117 0.146 0.131 0.148 0.110 0.134 0.078 0.145
FeO0.510 0.546 0.482 0.429 0.491 0.426 0.442 0.459 0.446 0.313 0.312 0.328 0.288 0.388 0.414 0.421 0.333 0.216
Al2O30.560 0.581 0.497 0.532 0.604 0.586 0.601 0.612 0.528 0.509 0.666 0.639 0.609 0.605 0.664 0.628 0.660 0.739
NiO0.000 0.055 0.000 0.005 0.041 0.026 0.001 0.000 0.005 0.014 0.015 0.000 0.017 0.000 0.040 0.030 0.000 0.026
CaO13.051 12.976 12.953 12.758 12.813 11.931 12.750 12.173 12.737 12.558 12.204 11.532 12.363 12.472 12.212 12.331 12.316 12.819
SiO258.423 59.025 58.375 57.720 58.779 61.302 59.506 59.336 58.312 58.214 57.087 56.946 59.022 59.204 58.103 59.026 58.151 60.026
TiO20.000 0.000 0.000 0.000 0.000 0.052 0.057 0.004 0.000 0.000 0.030 0.021 0.000 0.000 0.001 0.000 0.000 0.000
Cl0.001 0.009 0.012 0.016 0.010 0.041 0.025 0.032 0.017 0.040 0.005 0.002 0.007 0.184 0.017 0.008 0.017 0.023
Total96.729 97.399 96.454 95.294 96.681 97.274 97.510 96.854 95.784 95.458 93.809 93.057 96.459 97.646 95.171 96.585 95.360 98.521
Mg4.890 4.869 4.899 4.897 4.830 4.521 4.820 4.879 4.830 4.872 4.868 4.925 4.872 4.798 4.855 4.862 4.884 4.862
Fe2+0.029 0.032 0.021 0.016 0.056 0.048 0.050 0.023 0.053 0.028 0.016 0.000 0.028 0.000 0.032 0.034 0.006 0.019
Mg/(Mg + Fe2+)0.990 0.990 1.000 1.000 0.990 0.990 0.990 1.000 0.990 0.990 1.000 1.000 0.990 1.000 0.990 0.990 1.000 1.000
SamplesKC3-2KC3-3KC3-4KC3-5KC3-6KC3-7KC3-8KC3-9KC3-10KC4-1KC4-2KC4-3KC4-4KC4-5KC4-6KC4-7KC4-8KC4-9
Na2O0.0390.0540.0570.0880.0470.0160.0640.060.0920.0150.0720.0680.0690.0670.0140.0410.0590.01
Cr2O30.000 0.000 0.000 0.010 0.000 0.000 0.072 0.000 0.005 0.004 0.000 0.000 0.018 0.000 0.017 0.000 0.000 0.000
K2O0.067 0.047 0.057 0.088 0.097 0.044 0.035 0.028 0.046 0.042 0.053 0.037 0.035 0.051 0.048 0.049 0.037 0.053
MgO24.595 24.642 24.317 23.781 25.030 24.065 24.435 24.689 24.169 23.770 24.085 24.059 23.762 23.946 24.303 24.144 24.073 24.292
MnO0.167 0.107 0.135 0.209 0.084 0.118 0.121 0.131 0.123 0.103 0.072 0.032 0.131 0.120 0.109 0.169 0.150 0.157
FeO0.272 0.256 0.313 0.272 0.231 0.221 0.220 0.236 0.302 0.294 0.290 0.291 0.387 0.510 0.307 0.260 0.232 0.281
Al2O30.759 0.681 0.589 0.890 0.658 0.700 0.631 0.557 0.655 0.468 0.448 0.476 0.417 0.634 0.536 0.483 0.526 0.514
NiO0.005 0.030 0.000 0.000 0.009 0.000 0.022 0.015 0.000 0.000 0.000 0.014 0.017 0.000 0.000 0.000 0.024 0.014
CaO12.592 12.528 12.502 11.160 12.471 12.782 12.461 12.443 12.613 12.534 12.511 12.504 12.437 12.150 12.689 12.750 12.137 12.704
SiO259.311 59.753 59.646 57.839 59.449 59.270 59.657 60.026 59.272 59.430 59.647 59.015 58.584 58.493 59.051 59.843 59.067 59.220
TiO20.028 0.027 0.026 0.033 0.000 0.025 0.019 0.006 0.051 0.008 0.000 0.009 0.000 0.004 0.000 0.028 0.010 0.000
Cl0.028 0.008 0.020 0.000 0.001 0.029 0.000 0.014 0.012 0.008 0.004 0.010 0.007 0.014 0.009 0.001 0.024 0.011
Total97.857 98.131 97.657 94.370 98.077 97.263 97.737 98.202 97.337 96.674 97.181 96.513 95.862 95.986 97.081 97.768 96.334 97.254
Mg4.910 4.943 4.932 4.891 4.934 5.016 4.862 4.908 4.934 4.912 4.824 4.864 4.895 4.873 4.903 4.922 4.851 4.902
Fe2+0.034 0.030 0.029 0.013 0.031 0.025 0.024 0.024 0.026 0.000 0.033 0.033 0.026 0.045 0.000 0.000 0.029 0.010
Mg/(Mg + Fe2+)0.990 0.990 0.990 0.990 0.990 0.990 1.000 0.990 0.990 1.000 0.990 0.990 0.990 0.990 1.000 1.000 0.990 1.000
Table 2. Trace element and REE analyses of the Chuncheon nephrite (ppm).
Table 2. Trace element and REE analyses of the Chuncheon nephrite (ppm).
SamplesKC-1-1KC-1-2KC-1-3KC-2-1KC-2-2KC-2-3KC-3-1KC-3-2KC-3-3KC-4-1KC-4-2KC-4-3
Li0.447 0.472 0.448 0.413 0.348 0.549 0.388 0.366 0.372 0.395 0.424 0.383
Be10.1610.6110.9516.1515.8516.3614.9314.9215.7413.0813.4713.48
Sc0.375 0.334 0.318 0.303 0.247 0.749 0.354 0.390 0.371 0.311 0.365 0.341
Ti25.8629.1327.1610.6910.6712.0919.8621.5323.8828.8130.2830.15
V7.450 7.940 7.490 1.629 1.616 1.624 4.050 4.310 4.420 7.310 7.560 7.460
Cr1.781.511.411.461.990.850.941.490.481.431.281.62
Ni16.1516.6916.3411.5911.8413.89.559.139.579.9710.5110.54
Co0.224 0.236 0.354 0.247 0.224 0.236 0.065 0.091 0.069 0.462 0.399 0.447
Cu0.078 0.048 0.268 0.106 0.043 0.220 0.059 0.014 0.021 0.128 0.030 0.041
Zn35.7836.4435.8722.4522.2123.8629.3729.5330.3725.6726.6927.7
Ga1.120 1.093 1.018 0.902 0.924 0.981 0.951 0.991 1.062 1.126 1.149 1.170
Rb1.141 1.238 1.129 1.471 1.565 2.127 2.590 2.234 2.740 1.215 1.312 1.158
Sr21.1222.8721.5914.0212.5313.9216.4716.4917.2410.2911.3810.9
Y0.407 0.448 0.383 0.314 0.346 0.658 0.584 0.541 0.982 0.421 0.448 0.372
Zr0.549 0.615 0.429 0.322 0.173 2.110 0.503 0.503 0.883 0.429 0.393 0.451
Nb0.120 0.142 0.163 0.072 0.080 0.092 0.067 0.028 0.050 0.104 0.124 0.137
Ba0.500 0.470 0.540 0.487 0.260 0.560 0.550 0.640 0.560 1.000 1.160 1.070
La0.336 0.390 0.343 0.530 0.509 0.516 0.334 0.349 0.357 0.460 0.543 0.473
Ce0.709 0.772 0.752 1.147 1.110 1.170 0.616 0.650 0.645 0.934 0.983 0.931
Pr0.077 0.079 0.065 0.120 0.132 0.127 0.061 0.064 0.066 0.087 0.111 0.108
Nd0.239 0.326 0.287 0.511 0.391 0.493 0.209 0.200 0.263 0.350 0.556 0.516
Sm0.100 0.099 0.036 0.055 0.163 0.027 0.032 0.050 0.009 0.092 0.007 0.084
Eu0.008 0.020 0.013 0.005 0.013 0.040 0.026 0.009 0.018 0.013 0.030 0.002
Gd0.119 0.058 0.137 0.007 0.109 0.082 0.057 0.098 0.024 0.070 0.110 0.020
Tb0.020 0.004 0.020 0.012 0.009 0.016 0.018 0.027 0.014 0.014 0.005 0.027
Dy0.014 0.050 0.117 0.105 0.062 0.060 0.058 0.051 0.062 0.083 0.152 0.037
Ho0.011 0.017 0.011 0.033 0.015 0.028 0.045 0.018 0.036 0.008 0.011 0.013
Er0.0520.0610.0110.0450.0170.0560.0090.0320.0560.0160.0530.070
Tm0.0070.0050.0150.0050.0230.0080.0060.0090.0140.0150.0110.007
Yb0.0240.0290.0410.0460.0920.0810.0320.0380.0430.0900.0500.076
Lu0.0130.0150.0100.0090.0130.0270.0040.0210.0100.0030.0080.011
Hf0.0790.008------------0.005------0.0240.0130.0420.005------0.056
Ta0.0140.007------------0.012------0.003------0.0160.0130.0040.022
Pb0.6300.6350.6570.6910.8870.8540.8610.77214.5500.5070.5280.451
Th0.0910.1070.1140.0230.0340.0170.0530.0760.0470.0970.1140.107
U0.2150.1800.2010.2130.1940.1710.1660.1840.1960.2740.2670.280
LaN1.08 1.26 1.11 1.71 1.64 1.66 1.08 1.13 1.15 1.48 1.75 1.53
CeN0.88 0.96 0.93 1.42 1.37 1.45 0.76 0.80 0.80 1.16 1.22 1.15
PrN0.63 0.65 0.53 0.98 1.08 1.04 0.50 0.52 0.54 0.71 0.91 0.89
NdN0.40 0.54 0.48 0.85 0.65 0.82 0.35 0.33 0.44 0.58 0.93 0.86
SmN0.51 0.51 0.18 0.28 0.84 0.14 0.16 0.26 0.05 0.47 0.04 0.43
EuN0.11 0.27 0.18 0.07 0.18 0.54 0.35 0.12 0.24 0.18 0.41 0.03
GdN0.46 0.22 0.53 0.03 0.42 0.32 0.22 0.38 0.09 0.27 0.42 0.08
TbN0.42 0.08 0.42 0.25 0.19 0.34 0.38 0.57 0.30 0.30 0.11 0.57
DyN0.04 0.16 0.36 0.33 0.19 0.19 0.18 0.16 0.19 0.26 0.47 0.11
HoN0.15 0.24 0.15 0.46 0.21 0.39 0.63 0.25 0.50 0.11 0.15 0.18
ErN0.25 0.29 0.05 0.21 0.08 0.27 0.04 0.15 0.27 0.08 0.25 0.33
TmN0.22 0.15 0.46 0.15 0.71 0.25 0.19 0.28 0.43 0.46 0.34 0.22
YbN0.11 0.14 0.20 0.22 0.44 0.39 0.15 0.18 0.21 0.43 0.24 0.36
LuN0.39 0.45 0.30 0.27 0.39 0.81 0.12 0.63 0.30 0.09 0.24 0.33
ΣREE1.73 1.93 1.86 2.63 2.66 2.73 1.51 1.62 1.62 2.24 2.63 2.38
LREE1.47 1.69 1.50 2.37 2.32 2.37 1.28 1.32 1.36 1.94 2.23 2.11
HREE0.26 0.24 0.36 0.26 0.34 0.36 0.23 0.29 0.26 0.30 0.40 0.26
LREE/HREE5.65 7.05 4.13 9.04 6.82 6.63 5.58 4.50 5.24 6.47 5.58 8.10
δEu0.22 0.74 0.50 0.44 0.28 2.39 1.84 0.39 3.53 0.48 1.77 0.11
δCe1.52 1.44 1.60 1.56 1.56 1.63 1.35 1.36 1.32 1.48 1.31 1.42
LaN/SmN2.11 2.48 5.99 6.06 1.96 12.02 6.57 4.39 24.95 3.15 48.79 3.54
SmN/HoN3.35 2.14 1.21 0.61 4.00 0.36 0.26 1.02 0.09 4.23 0.23 2.38
GdN/LuN1.17 0.50 1.76 0.10 1.07 0.39 1.83 0.60 0.31 2.99 1.76 0.23
Table 3. Results of the hydrogen and oxygen isotope analyses of Chuncheon nephrite.
Table 3. Results of the hydrogen and oxygen isotope analyses of Chuncheon nephrite.
SamplesδDV-SMOW (‰)δ18OV-SMOW (‰)δDH2Oδ18OH2O
330~450 °C330 °C390 °C450 °C
KC-1−117−4.8−95−4.3−3.7−3.3
KC-2−114−4.5−92−4.0−3.4−3.0
KC-3−116−7.2−94−6.7−6.1−5.7
KC-4−109−2.9−88−2.4−1.8−1.4
Table 4. Average values of major element contents of dolomite-related nephrite from different geographic origins (wt%).
Table 4. Average values of major element contents of dolomite-related nephrite from different geographic origins (wt%).
SamplesCaOMgOFeOAl2O3Na2O + K2OSiO2Na2O + K2O + CaO
KC12.47 23.97 0.34 0.60 0.13 58.98 12.60
XA12.92 23.85 0.15 0.43 0.13 58.06 13.05
QG13.59 23.54 1.15 0.70 0.10 58.22 13.69
JP13.79 24.47 0.10 0.23 0.09 58.56 13.88
HT13.88 23.41 0.48 0.13 0.10 57.96 13.98
ER11.9525.870.130.680.2158.1612.17
DH13.823.60.760.390.1558.0513.95
LD12.9925.390.210.190.3357.8213.33
Note: KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; ER—Taksimo, Russia [2]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [33].
Table 5. Main chemical composition data of the dolomite-related nephrite from different geographic origins (wt%).
Table 5. Main chemical composition data of the dolomite-related nephrite from different geographic origins (wt%).
SampleSiO2Al2O3FeOMgOCaONa2OK2OMgO + FeONa2O + K2ONa2O + K2O + CaO
XA-158.24 0.40 0.01 24.02 13.21 0.04 0.14 24.03 0.18 13.39
XA-258.14 0.39 0.02 23.80 13.37 0.05 0.07 23.82 0.12 13.49
XA-358.20 0.33 0.00 23.70 12.98 0.03 0.04 23.70 0.07 13.05
XA-458.07 0.35 0.02 23.92 12.84 0.00 0.04 23.94 0.04 12.88
XA-558.25 0.42 0.03 24.41 12.79 0.05 0.05 24.44 0.10 12.89
XA-658.34 0.58 0.07 24.21 12.63 0.08 0.10 24.28 0.18 12.81
XA-758.85 0.49 0.04 24.65 12.65 0.03 0.06 24.69 0.09 12.74
XA-858.03 0.60 0.05 24.33 12.44 0.04 0.08 24.38 0.12 12.56
XA-957.31 0.47 0.08 22.86 13.18 0.06 0.10 22.94 0.16 13.34
XA-1057.28 0.52 0.04 23.16 12.74 0.00 0.22 23.20 0.22 12.96
XA-1157.91 0.19 1.34 23.34 13.30 0.12 0.07 24.68 0.19 13.49
QG-157.59 0.61 0.30 23.93 13.99 0.06 0.01 24.23 0.07 14.06
QG-257.78 1.20 0.14 24.05 14.18 0.17 0.07 24.19 0.24 14.42
QG-359.54 0.13 0.09 24.37 13.50 0.06 0.03 24.46 0.09 13.59
QG-459.46 0.12 0.04 24.83 13.92 0.06 0.02 24.87 0.08 14.00
QG-559.40 0.08 0.15 23.90 13.85 0.04 0.02 24.05 0.06 13.91
QG-659.21 0.13 0.17 23.83 13.53 0.06 0.03 24.00 0.09 13.62
QG-758.22 0.89 0.41 23.74 13.67 0.02 0.04 24.15 0.06 13.73
QG-858.81 0.90 0.31 24.50 13.64 0.03 0.01 24.81 0.04 13.68
QG-958.17 1.78 0.40 23.92 14.05 0.17 0.07 24.32 0.24 14.29
QG-1058.64 0.26 0.73 23.79 13.80 0.05 0.03 24.52 0.08 13.88
QG-1156.91 0.96 5.45 21.45 13.30 0.04 0.04 26.90 0.08 13.38
QG-1257.09 0.65 4.48 21.61 13.06 0.07 0.04 26.09 0.11 13.17
QG-1356.37 1.33 3.22 21.72 13.49 0.03 0.03 24.94 0.06 13.55
JP-158.57 0.02 0.15 24.66 13.92 0.04 0.02 24.81 0.06 13.97
JP-257.77 0.24 0.04 24.53 13.97 0.05 0.04 24.58 0.10 14.07
JP-358.99 0.20 0.09 24.17 13.75 0.09 0.03 24.26 0.12 13.87
JP-457.92 0.13 0.09 24.64 13.90 0.02 0.02 24.72 0.05 13.95
JP-558.57 0.43 0.09 23.55 13.96 0.13 0.02 23.65 0.15 14.11
JP-659.19 0.15 0.13 24.64 13.62 0.06 0.02 24.77 0.07 13.69
JP-759.76 0.06 0.04 24.73 13.64 0.02 0.04 24.78 0.06 13.70
JP-859.05 0.06 0.01 24.81 13.40 0.04 0.04 24.82 0.07 13.47
JP-957.23 0.74 0.25 24.49 14.00 0.07 0.04 24.74 0.10 14.11
HT-158.60 0.02 0.46 23.77 14.23 0.09 0.03 24.22 0.12 14.35
HT-257.85 0.08 0.43 23.17 13.59 0.14 0.07 23.60 0.20 13.79
HT-358.70 0.08 0.48 23.25 13.98 0.07 0.04 23.73 0.11 14.09
HT-457.19 0.10 0.42 23.43 14.14 0.01 0.01 23.85 0.02 14.16
HT-557.39 0.12 0.33 23.88 13.67 0.06 0.06 24.21 0.13 13.80
HT-657.37 0.22 0.40 23.34 13.72 0.07 0.02 23.74 0.09 13.81
HT-758.14 0.10 0.54 23.32 13.93 0.07 0.02 23.85 0.09 14.02
HT-857.83 0.11 0.63 23.53 13.73 0.04 0.05 24.17 0.10 13.82
HT-959.18 0.18 0.65 22.95 14.06 0.09 0.03 23.60 0.12 14.18
HT-1058.18 0.06 0.47 23.10 13.97 0.04 0.02 23.57 0.06 14.02
HT-1157.51 0.08 0.44 23.07 13.78 0.10 0.05 23.51 0.15 13.93
HT-1258.22 0.06 0.40 23.36 13.92 0.04 0.02 23.76 0.06 13.97
HT-1358.34 0.18 0.54 23.63 14.01 0.07 0.06 24.17 0.13 14.13
HT-1457.04 0.21 0.44 23.84 13.49 0.07 0.08 24.28 0.15 13.64
HT-1557.62 0.21 0.34 23.64 13.99 0.06 0.02 23.99 0.09 14.07
HT-1658.26 0.31 0.75 23.30 13.92 0.04 0.01 24.05 0.05 13.97
ER-158.30 0.59 0.36 26.23 11.39 0.21 0.00 26.59 0.21 11.60
ER-258.03 0.56 0.00 25.87 11.85 0.13 0.00 25.87 0.13 11.98
ER-358.49 0.65 0.19 25.83 11.86 0.06 0.08 26.02 0.14 12.00
ER-458.43 0.74 0.08 25.76 12.18 0.03 0.10 25.84 0.13 12.31
ER-558.08 0.79 0.00 25.74 12.25 0.23 0.13 25.74 0.36 12.61
ER-657.73 0.97 0.09 25.82 11.93 0.24 0.10 25.91 0.34 12.27
ER-758.05 0.47 0.19 25.83 12.22 0.19 0.00 26.02 0.19 12.41
DH-158.30 0.32 0.76 23.26 13.87 0.05 0.02 24.03 0.07 13.94
DH-258.57 0.36 0.79 23.53 14.08 0.05 0.04 24.32 0.10 14.18
DH-358.10 0.65 0.80 23.28 13.46 0.08 0.13 24.07 0.21 13.67
DH-458.14 0.46 0.88 23.26 13.17 0.05 0.08 24.14 0.13 13.30
DH-557.35 0.36 0.95 22.83 14.07 0.13 0.07 23.77 0.20 14.27
DH-658.92 0.36 0.82 22.87 14.11 0.05 0.07 23.69 0.12 14.23
DH-758.26 0.31 0.53 24.08 13.67 0.05 0.07 24.62 0.12 13.79
DH-857.47 0.33 0.90 23.56 13.94 0.12 0.04 24.46 0.16 14.10
DH-957.89 0.41 0.91 25.15 13.67 0.11 0.06 26.06 0.17 13.84
DH-1058.27 0.40 0.63 23.86 14.15 0.12 0.05 24.48 0.16 14.31
DH-1157.33 0.28 0.36 23.96 13.63 0.16 0.08 24.32 0.23 13.87
LD-157.55 0.27 0.40 25.28 13.82 0.23 0.00 25.68 0.23 14.05
LD-257.39 0.29 0.25 24.92 13.83 0.28 0.03 25.17 0.31 14.14
LD-357.11 0.29 0.28 25.00 13.86 0.24 0.00 25.28 0.24 14.10
LD-457.53 0.11 0.19 25.48 13.64 0.21 0.01 25.67 0.22 13.86
LD-556.69 0.26 0.41 24.70 13.87 0.24 0.00 25.11 0.24 14.11
LD-657.60 0.34 0.24 24.95 13.41 0.20 0.05 25.19 0.25 13.66
LD-758.60 0.17 0.14 25.62 12.05 0.41 0.00 25.76 0.41 12.46
LD-858.65 0.13 0.10 25.91 12.20 0.34 0.00 26.01 0.34 12.54
LD-957.63 0.05 0.13 25.31 12.99 0.29 0.11 25.44 0.40 13.39
LD-1058.64 0.08 0.12 25.96 12.19 0.34 0.10 26.08 0.44 12.63
LD-1158.29 0.06 0.13 25.82 12.06 0.33 0.06 25.95 0.39 12.45
LD-1258.18 0.17 0.09 25.67 12.01 0.39 0.14 25.76 0.53 12.54
Note: XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; ER—Taksimo, Russia [2]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [33].
Table 6. Trace elements of dolomite-related nephrites from different geographic origins (ppm).
Table 6. Trace elements of dolomite-related nephrites from different geographic origins (ppm).
SampleCrNiCoRbSrZrNbBaHfTaThU
XA-113.02 0.05 ------38.42 8.36 2.96 0.74 14.34 0.08 0.06 0.22 0.64
XA-227.72 1.27 ------46.29 7.91 4.77 0.27 17.44 0.14 0.06 0.30 1.05
XA-345.53 2.41 ------21.29 4.87 10.29 0.54 19.96 0.31 0.09 0.10 0.12
XA-425.84 3.95 ------0.62 43.07 0.37 1.81 1.09 0.01 0.13 0.08 1.32
XA-58.95 0.95 ------1.59 3.75 0.34 2.02 0.90 0.01 0.11 0.05 0.60
XA-633.72 0.49 ------105.14 11.71 3.14 1.55 13.21 0.07 0.07 0.36 1.44
XA-711.00 0.25 ------4.43 5.88 0.48 1.95 1.31 0.02 0.06 0.07 1.11
XA-8123.72 2.98 ------26.27 12.83 0.92 1.74 4.20 0.03 0.08 0.23 0.09
XA-9178.70 3.40 ------24.99 9.01 1.89 0.27 5.47 0.05 0.05 0.12 0.99
XA-1092.77 1.15 ------3.02 9.47 1.83 1.26 2.93 0.05 0.08 0.13 1.15
XA-1155.38 0.34 ------3.62 7.26 1.49 0.99 2.15 0.04 0.08 0.12 0.76
XA-12151.05 2.26 ------9.32 7.55 3.45 7.65 1.72 0.11 0.30 0.58 2.09
XA-AVG63.95 1.63 ------23.75 10.97 2.66 1.73 7.06 0.08 0.10 0.20 0.95
QG-139.73 34.55 2.40 1.54 10.26 20.06 1.41 18.41 0.76 0.66 1.39 2.00
QG-234.89 37.44 2.60 1.29 9.32 20.75 0.96 17.63 0.71 0.69 0.79 2.13
QG-315.57 9.69 0.82 2.40 13.23 6.53 0.58 10.50 0.12 0.03 0.22 0.28
QG-419.85 10.85 0.85 1.39 19.44 6.93 0.51 15.63 0.13 0.03 0.20 0.42
QG-520.73 10.06 0.89 1.41 13.33 7.93 0.32 11.25 0.15 0.02 0.17 0.37
QG-614.29 38.81 24.68 4.96 10.85 17.06 0.82 8.30 0.29 0.04 0.13 0.14
QG-715.76 20.36 8.83 1.50 10.06 17.83 1.31 7.17 0.31 0.06 0.09 0.09
QG-818.54 21.89 7.94 2.43 9.55 17.55 1.05 6.87 0.30 0.05 0.20 0.23
QG-916.40 4.05 0.80 0.34 9.56 1.19 0.22 5.20 0.02 0.01 0.04 0.75
QG-109.99 3.68 0.72 0.62 10.06 1.25 0.21 6.48 0.02 0.01 0.09 0.54
QG-114.05 7.84 1.30 0.64 8.76 1.26 0.22 5.39 0.02 0.01 0.01 0.50
QG-1219.41 11.00 9.80 0.82 10.84 0.66 0.48 4.08 0.01 0.02 0.07 0.44
QG-1314.07 11.77 8.30 1.20 12.56 0.69 0.50 3.22 0.01 0.02 0.04 0.43
QG-1420.52 3.84 1.66 0.54 10.09 1.44 0.52 4.63 0.02 0.02 0.04 0.25
QG-155.16 3.24 1.69 0.68 8.01 1.43 0.54 2.52 0.02 0.02 0.00 0.25
QG-AVG17.93 15.27 4.89 1.45 11.06 8.17 0.64 8.49 0.19 0.11 0.23 0.59
JP-14.96 18.60 ------0.19 6.11 0.70 ------0.04 0.13 ------0.04 0.02
JP-23.16 11.45 ------0.19 40.28 0.61 0.02 0.44 0.08 ------------0.05
JP-332.93 18.78 ------0.81 16.90 2.12 0.04 0.50 0.06 0.01 0.05 1.13
JP-46.44 12.84 ------0.18 7.76 2.63 0.09 0.44 ------0.01 0.02 0.16
JP-54.13 11.62 ------0.08 5.34 0.48 0.06 0.17 0.07 ------0.03 0.32
JP-612.00 5.82 ------0.92 25.73 0.29 0.05 0.91 0.04 0.01 0.02 0.14
JP-79.00 13.96 ------0.05 6.24 2.85 0.07 0.52 0.14 0.02 0.04 0.08
JP-813.31 25.10 ------0.09 12.85 1.17 n.d.n.d.0.02 ------0.06 0.53
JP-92.83 20.01 ------0.13 13.61 0.21 n.d.0.23 n.d.------0.02 0.24
JP-109.49 24.43 ------0.05 13.19 1.28 0.06 0.24 n.d.------0.10 0.59
JP-AVG9.83 16.26 ------0.27 14.80 1.23 0.05 0.39 0.07 0.01 0.04 0.33
HT-133.93 4.42 ------0.19 23.36 0.45 0.05 0.85 0.01 0.00 0.10 0.71
HT-225.50 1.41 ------0.29 36.37 0.99 0.02 0.56 0.02 0.00 0.12 0.63
HT-335.28 3.17 ------0.11 24.48 0.61 0.09 0.58 0.01 0.00 0.04 0.20
HT-421.18 3.86 ------0.29 20.89 2.47 0.19 1.92 0.07 0.01 0.16 0.36
HT-529.84 1.85 ------0.52 48.86 0.59 0.08 1.09 0.02 0.01 0.16 0.89
HT-628.19 2.35 ------0.34 99.71 0.00 0.03 1.57 0.02 0.01 0.10 0.80
HT-722.97 4.30 ------0.57 49.32 0.39 0.11 1.33 0.03 0.01 0.08 0.60
HT-836.66 2.98 ------0.48 45.50 0.39 0.12 2.03 0.00 0.01 0.11 0.66
HT-98.06 1.38 ------0.21 79.48 0.00 0.10 1.25 0.00 0.00 0.15 1.03
HT-1010.32 1.84 ------0.14 29.14 1.20 0.03 0.59 0.02 0.00 0.08 0.47
HT-1155.35 0.86 ------0.42 30.24 0.00 0.16 2.16 0.02 0.01 0.10 0.53
HT-1227.69 1.06 ------0.39 45.44 0.00 0.11 5.26 0.03 0.00 0.04 0.41
HT-AVG27.91 2.46 ------0.33 44.40 0.59 0.09 1.60 0.02 0.01 0.10 0.61
DH-144.74 1692.83 83.65 2.03 167.32 40.78 8.59 147.41 0.44 0.22 0.18 0.14
DH-262.80 917.13 46.25 1.99 201.43 126.08 9.17 113.17 3.70 0.41 3.13 0.59
DH-331.58 1354.53 66.28 1.06 164.32 63.43 5.52 111.25 1.06 0.24 0.29 0.00
DH-459.44 648.16 31.94 1.10 79.85 81.71 2.75 16.68 2.00 0.22 0.88 0.11
DH-558.46 823.01 42.40 1.98 99.72 155.37 3.50 31.16 4.99 0.24 2.47 0.39
DH-AVG51.40 1087.13 54.10 1.63 142.53 93.47 5.91 83.93 2.44 0.27 1.39 0.24
Note: XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; AVG—the average value of trace elements.
Table 7. Comparison of the average values of the trace element characteristics of dolomite-related nephrites from different geographic origins.
Table 7. Comparison of the average values of the trace element characteristics of dolomite-related nephrites from different geographic origins.
SamplesRb/SrU/ThSr/Ba
KC0.11 4.03 29.13
XA2.66 6.95 5.50
QG0.13 7.92 1.72
JP0.02 8.69 53.50
HT0.01 6.30 37.42
DH0.01 0.25 2.48
Note: KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Table 8. REEs of dolomite-related nephrites from different geographic origins (ppm).
Table 8. REEs of dolomite-related nephrites from different geographic origins (ppm).
SampleLaCePrNdSmEuGdTbDyHoErTmYbLuΣREELREEHREELREE/HREE
XA-10.59 1.47 0.19 0.92 0.29 0.02 0.33 0.06 0.47 0.11 0.34 0.05 0.35 0.06 5.25 3.48 1.77 1.97
XA-20.58 1.09 0.17 0.77 0.21 0.02 0.25 0.05 0.36 0.08 0.23 0.04 0.23 0.04 4.12 2.84 1.28 2.22
XA-32.85 6.00 0.75 2.82 0.60 0.07 0.51 0.08 0.56 0.12 0.34 0.05 0.35 0.05 15.15 13.09 2.06 6.35
XA-40.38 0.55 0.06 0.25 0.10 0.01 0.18 0.05 0.46 0.13 0.42 0.07 0.42 0.06 3.14 1.35 1.79 0.75
XA-50.90 2.50 0.38 1.85 0.62 0.03 0.74 0.16 1.26 0.31 0.96 0.16 1.10 0.17 11.14 6.28 4.86 1.29
XA-61.47 2.68 0.37 1.41 0.37 0.01 0.38 0.07 0.51 0.12 0.34 0.05 0.31 0.05 8.14 6.31 1.83 3.45
XA-70.20 0.39 0.06 0.34 0.17 0.01 0.30 0.07 0.54 0.12 0.32 0.04 0.26 0.04 2.86 1.17 1.69 0.69
XA-826.40 38.72 3.44 10.45 1.36 0.28 1.35 0.17 1.01 0.21 0.63 0.09 0.61 0.10 84.82 80.65 4.17 19.34
XA-90.45 0.94 0.12 0.55 0.18 0.02 0.28 0.06 0.53 0.13 0.38 0.05 0.29 0.04 4.02 2.26 1.76 1.28
XA-100.25 0.67 0.12 0.71 0.32 0.04 0.46 0.09 0.69 0.16 0.47 0.07 0.37 0.05 4.47 2.11 2.36 0.89
XA-110.17 0.44 0.08 0.44 0.22 0.03 0.35 0.08 0.57 0.13 0.37 0.05 0.31 0.04 3.28 1.38 1.90 0.73
XA-1213.57 19.90 1.64 4.36 0.66 0.02 0.73 0.11 0.75 0.18 0.54 0.09 0.72 0.10 43.37 40.15 3.22 12.47
XA-AVG3.98 6.28 0.62 2.07 0.43 0.05 0.49 0.09 0.64 0.15 0.45 0.07 0.44 0.07 15.81 13.42 2.39 4.29
QG-13.37 6.61 0.56 2.16 0.52 0.13 0.55 0.12 0.75 0.14 0.38 0.07 0.44 0.06 15.86 13.42 2.51 5.35
QG-22.54 5.62 0.54 1.48 0.43 0.11 0.46 0.10 0.66 0.13 0.31 0.06 0.39 0.05 12.88 10.09 2.17 4.65
QG-30.45 1.48 0.14 0.59 0.12 0.02 0.12 0.02 0.11 0.02 0.06 0.01 0.06 0.01 3.21 2.50 0.40 6.25
QG-40.72 1.74 0.14 0.57 0.13 0.02 0.11 0.02 0.12 0.02 0.06 0.01 0.08 0.01 3.75 3.12 0.45 6.93
QG-50.57 1.44 0.11 0.48 0.11 0.03 0.10 0.02 0.11 0.02 0.06 0.01 0.07 0.01 3.14 2.54 0.40 6.35
QG-60.16 0.75 0.05 0.18 0.05 0.01 0.08 0.02 0.16 0.04 0.21 0.05 0.48 0.09 2.33 0.81 1.13 0.72
QG-70.11 0.63 0.02 0.09 0.03 0.01 0.04 0.01 0.07 0.02 0.07 0.02 0.12 0.02 1.26 0.39 0.36 1.08
QG-80.05 0.43 0.02 0.10 0.02 0.01 0.06 0.02 0.12 0.03 0.10 0.03 0.20 0.03 1.22 0.29 0.58 0.50
QG-90.14 0.36 0.02 0.10 0.02 0.01 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.72 0.53 0.09 5.89
QG-100.13 0.37 0.02 0.10 0.03 0.01 0.03 0.00 0.03 0.01 0.02 0.00 0.02 0.00 0.77 0.53 0.11 4.82
QG-110.17 0.43 0.05 0.17 0.04 0.01 0.03 0.01 0.03 0.01 0.01 0.00 0.02 0.00 0.98 0.82 0.11 7.45
QG-120.11 0.19 0.03 0.13 0.03 0.00 0.02 0.00 0.03 0.01 0.02 0.00 0.01 0.00 0.58 0.49 0.09 5.44
QG-130.15 0.29 0.04 0.17 0.04 0.01 0.04 0.01 0.04 0.01 0.02 0.00 0.03 0.00 0.85 0.69 0.15 4.60
QG-140.06 0.08 0.01 0.06 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.29 0.23 0.07 3.29
QG-150.08 0.11 0.01 0.05 0.02 0.00 0.02 0.00 0.02 0.01 0.01 0.00 0.02 0.00 0.35 0.27 0.09 3.00
QG-AVG0.59 1.37 0.12 0.43 0.11 0.03 0.11 0.02 0.15 0.03 0.09 0.02 0.13 0.02 3.21 2.45 0.58 4.42
JP-10.31 0.33 0.13 0.90 0.43 0.12 0.36 0.14 0.63 0.16 0.25 0.04 0.07 0.03 3.90 2.23 1.67 1.33
JP-20.84 0.70 0.19 1.03 0.54 0.04 0.31 0.08 0.45 0.13 0.24 0.04 0.19 0.03 4.82 3.34 1.48 2.26
JP-30.64 0.58 0.19 1.10 0.30 0.03 0.28 0.13 0.71 0.20 0.50 0.06 0.36 0.05 5.12 2.83 2.29 1.24
JP-40.30 0.17 0.06 0.41 0.18 0.01 0.06 0.05 0.15 0.02 0.22 0.00 0.15 0.04 1.83 1.13 0.70 1.62
JP-50.33 0.28 0.12 0.88 0.39 0.10 0.14 0.06 0.09 0.05 0.22 0.05 0.22 0.03 2.95 2.09 0.86 2.44
JP-61.20 0.61 0.17 0.47 0.14 0.06 0.18 0.03 0.27 0.05 0.13 0.03 0.33 0.03 3.70 2.65 1.05 2.53
JP-70.34 0.40 0.15 0.87 0.05 0.07 0.05 0.07 0.21 0.04 0.24 0.06 0.09 0.04 2.68 1.87 0.80 2.33
JP-80.37 0.60 0.14 0.50 0.33 0.08 0.19 0.04 0.23 0.08 0.13 0.04 0.08 0.03 2.85 2.02 0.83 2.44
JP-90.40 0.64 0.19 0.82 0.23 0.01 0.25 0.05 0.45 0.11 0.34 0.05 0.28 0.01 3.81 2.29 1.53 1.50
JP-100.49 0.63 0.15 0.65 0.16 0.13 0.21 0.05 0.37 0.08 0.21 0.05 0.43 0.04 3.66 2.21 1.45 1.52
JP-AVG0.52 0.49 0.15 0.76 0.28 0.06 0.20 0.07 0.36 0.09 0.25 0.04 0.22 0.03 3.53 2.27 1.27 1.92
HT-10.52 1.52 0.17 0.88 0.13 0.05 0.07 0.01 0.17 0.02 0.09 0.01 0.04 0.01 3.70 3.26 0.44 7.48
HT-20.32 1.22 0.12 0.59 0.13 0.04 0.19 0.03 0.13 0.03 0.06 0.01 0.08 0.01 2.95 2.42 0.53 4.56
HT-30.34 1.53 0.22 0.83 0.20 0.08 0.21 0.03 0.18 0.03 0.10 0.01 0.07 0.00 3.85 3.21 0.64 5.00
HT-40.58 1.57 0.23 0.79 0.26 0.04 0.22 0.04 0.19 0.03 0.10 0.02 0.09 0.02 4.18 3.47 0.71 4.86
HT-50.44 1.56 0.15 0.80 0.22 0.04 0.00 0.04 0.06 0.02 0.14 0.02 0.14 0.01 3.66 3.22 0.44 7.30
HT-60.27 1.06 0.10 0.90 0.16 0.07 0.14 0.06 0.27 0.05 0.09 0.02 0.06 0.02 3.27 2.56 0.72 3.57
HT-70.47 2.29 0.26 0.51 0.17 0.09 0.32 0.02 0.23 0.06 0.19 0.03 0.12 0.01 4.77 3.79 0.99 3.84
HT-80.45 1.34 0.13 0.58 0.19 0.07 0.14 0.03 0.16 0.05 0.13 0.00 0.07 0.01 3.34 2.75 0.59 4.67
HT-90.67 1.84 0.25 0.81 0.16 0.05 0.18 0.02 0.17 0.03 0.11 0.01 0.07 0.01 4.38 3.78 0.60 6.34
HT-100.30 1.14 0.17 0.66 0.14 0.04 0.07 0.02 0.15 0.02 0.08 0.01 0.06 0.01 2.86 2.44 0.42 5.84
HT-110.80 2.28 0.36 1.57 0.42 0.05 0.50 0.06 0.36 0.06 0.21 0.02 0.09 0.02 6.81 5.47 1.34 4.09
HT-121.17 3.65 0.51 2.15 0.62 0.12 0.59 0.10 0.74 0.15 0.51 0.05 0.43 0.04 10.84 8.23 2.61 3.15
HT-AVG0.53 1.75 0.22 0.92 0.23 0.06 0.22 0.04 0.23 0.05 0.15 0.02 0.11 0.02 4.55 3.72 0.84 5.06
DH-10.62 1.20 0.16 0.57 0.04 0.01 0.16 0.02 0.13 0.03 0.05 0.01 0.03 0.00 4.05 2.60 0.43 0.18
DH-23.52 1.18 0.53 2.49 0.43 0.13 0.51 0.07 0.43 0.11 0.25 0.02 0.15 0.03 3.99 8.28 1.57 0.22
DH-33.70 1.19 0.54 2.27 0.57 0.11 0.34 0.08 0.53 0.08 0.30 0.03 0.27 0.04 3.04 8.38 1.67 6.11
DH-40.48 0.86 0.12 0.47 0.11 0.09 0.17 0.04 0.35 0.12 0.33 0.05 0.33 0.05 9.87 2.13 1.44 5.24
DH-50.86 0.43 0.18 1.33 0.34 0.06 0.58 0.12 0.48 0.15 0.32 0.04 0.20 0.00 10.04 3.20 1.89 5.06
DH-60.38 0.21 0.08 0.39 0.20 0.01 0.24 0.06 0.41 0.13 0.46 0.05 0.23 0.03 3.57 1.27 1.61 1.49
DH-70.28 0.40 0.05 0.13 0.12 0.02 0.11 0.00 0.06 0.01 0.03 0.01 0.06 0.00 5.10 1.00 0.28 1.69
DH-AVG1.41 0.78 0.24 1.09 0.26 0.06 0.30 0.06 0.34 0.09 0.25 0.03 0.18 0.02 5.67 3.84 1.27 2.86
LD-18.48 8.44 1.66 6.74 1.73 0.49 1.71 0.33 2.59 0.47 1.05 0.14 0.92 0.13 34.88 27.54 7.34 5.28
LD-27.32 3.84 1.40 5.71 1.14 0.25 1.46 0.21 1.53 0.36 1.24 0.17 1.11 0.15 25.89 19.66 6.23 4.48
LD-36.61 3.58 1.50 7.64 1.37 0.34 1.78 0.27 1.56 0.28 0.62 0.09 0.49 0.08 26.21 21.04 5.17 6.92
LD-46.31 6.81 1.74 6.21 1.24 1.19 1.24 0.22 1.38 0.27 0.84 0.15 0.93 0.14 41.28 23.50 5.16 4.55
LD-512.03 17.23 3.19 11.82 2.52 2.18 2.45 0.47 3.26 0.69 2.17 0.41 2.51 0.39 91.81 48.96 12.34 3.97
LD-AVG8.15 7.98 1.90 7.62 1.60 0.89 1.73 0.30 2.06 0.41 1.18 0.19 1.19 0.18 44.01 28.14 7.25 5.04
Note: XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33]; AVG—the average value of REEs.
Table 9. Average values of REEs in dolomite-related nephrites of different geographic origins.
Table 9. Average values of REEs in dolomite-related nephrites of different geographic origins.
SamplesΣREELREEHREELREE/HREEδEuδCe(La/Sm)N(Sm/Ho)N(Gd/Lu)N
KC2.13 1.83 0.30 6.23 1.06 1.46 10.17 1.66 1.06
XA15.81 13.42 2.39 4.29 0.25 1.46 3.35 1.00 0.96
QG3.21 2.45 0.58 4.42 0.74 2.19 2.78 1.26 0.90
JP3.53 2.27 1.27 1.92 1.16 0.73 1.77 1.36 0.90
HT4.55 3.72 0.84 5.06 0.99 2.38 1.54 2.01 2.56
DH5.67 3.84 1.27 2.86 0.71 0.71 3.71 1.53 1.18
LD44.01 28.14 7.25 5.04 1.53 0.66 3.27 1.48 1.54
Note: KC—Chuncheon, South Korea; XA—Alamas, **njiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Table 10. Hydrogen and oxygen isotopes of dolomite-related nephrites from different geographic origins.
Table 10. Hydrogen and oxygen isotopes of dolomite-related nephrites from different geographic origins.
SampleδDδ18OSampleδDδ18OSampleδDδ18O
KC-1−117−4.8 NE-9−109−9.2 XA-2−833.2
KC-2−114−4.5 CA-1−573.4 XA-3−936.1
KC-3−116−7.2 WU-1−56 1.5 XA-4−89 4.6
KC-4−109 −2.9 TC-1−1082.3 XA-5−853.5
NE-1−108 −8.7 TC-2−1100.5 XA-6−853.6
NE-2−114 −8.4 TC-3−1240.6 XA-7−94 6.2
NE-3−105 −9.9 ZS-1−7610.2 XA-8−904.1
NE-4−107 −9.0 ZS-2−76 8.3 XA-9−853.6
NE-5−108 −8.2 ZS-3−7710.4 XA-10−914.9
NE-6−112 −8.6 ZS-4−7410.2 XA-11−90 4.8
NE-7−109−8.9 XA-1−86 3.8 XA-12−863.8
NE-8−110 −9.3
Note: KC—Chuncheon, Korea; NE—Chuncheon, Korea [17]; CA—Cowell, Australia; WU—Wyoming, USA; TC—Kunlun Mountains, China; ZS—Złoty Stok, Poland; XA—Alamas, **njiang.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, N.; Bai, F.; Peng, Q.; Liu, M. Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits. Crystals 2023, 13, 1468. https://doi.org/10.3390/cryst13101468

AMA Style

Li N, Bai F, Peng Q, Liu M. Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits. Crystals. 2023; 13(10):1468. https://doi.org/10.3390/cryst13101468

Chicago/Turabian Style

Li, Nan, Feng Bai, Qi Peng, and Mengsong Liu. 2023. "Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits" Crystals 13, no. 10: 1468. https://doi.org/10.3390/cryst13101468

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop