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Figure S1. "H NMR of synthetic 2,3-dihydroxypropyl 8-(hexylselanyl)octanoate.
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Figure S2. 3C NMR of synthetic 2,3-dihydroxypropyl 8-(hexylselanyl)octanoate.
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Figure S3. Mass spectral analysis of synthetic 2,3-dihydroxypropyl 8-(hexylselanyl)octanoate.




Figure S4. Thin layer chromatographic analysis of synthetic Se-MAG. Lipid loadings in micrograms
are indicated at the bottom of each lane. Plates were stained with a 0.04 M ammonium molybdate
solution followed by charring (top) and with iodine vapour (bottom). Eluting solvent systems are as
follows: (A) hexanes:ethyl acetate (75:25 by vol.); (B) hexanes:acetone:ethyl acetate (74:25:1 by vol.);
(C) hexanes:acetone:ethyl acetate (50:25:25 by vol.). Lipid was placed on the plate as a solution in
hexane. O, origin. F, solvent front.
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Figure S5. Ultraviolet-visible absorption spectroscopic analysis of monoolein (9.9 MAG) and
synthetic Se-MAG. Measurements were made in 1 cm quartz cuvettes at a lipid concentration of 5
mg/mL in ethanol. UV absorbance by the lipid can impact on its use in spectrophotometric
measurements of reconstituted membrane proteins in the cubic phase where the lipid is present at a
concentration of approximately 2 molar. For reference, the absorbance values of the 9.9 MAG and Se-
MAG solutions at 280 nm are 0.045 and 0.73, respectively. Photographs of the two MAGs in molten
form at ~20 °C in 1.5 mL Eppendorf tubes are shown as insets.
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Figure S6. Small- and wide-angle X-ray scattering from solid, liquid and mesophases formed by neat
and hydrated MAGs. Data are shown as scattered X-ray intensity (normalized to the highest value in the
plot) versus scattering angle (20) in degrees. (A) Neat monoolein, lamellar crystalline (Lc) phase. (B)
Neat Se-MAG, lamellar crystalline (Lc) phase. (C) Neat monoolein, undercooled fluid isotropic (FI)
phase. (D) Neat Se-MAG, undercooled fluid isotropic (FI) phase. (E) Hydrated monoolein, cubic- Ia3d
phase. (F) Hydrated Se-MAG, lamellar liquid crystalline (L.) phase. (G) Hydrated Se-MAG*
(monoolein/Se-MAG, 50/50 by weight), cubic-Ia3d phase. The lamellar crystalline (L) and the liquid
crystalline (I, cubic-Ia3d) low-angle reflections are indexed as indicated.




