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Table S1. Several well-known MOFs for gravimetric CH4 adsorption capacity at 298 K so far. 

MOFs 

BET  

surface area  

(m2/g) 

Total (excess) CH4 adsorption 
Pressure  

(bar) 
Gravimetric uptake  

(mg/g) 

Volumetric uptake 

(cc(STP)/cc) 

Al-soc-MOF-1 [19], [8] 5585 
ca. 420 (579 cm3/g) 

ca. 263 (362 cm3/g) 

197 

123 

65 

35 

DUT-49 [22], [23] 5476 260  113 35 

PCN-68 [22], [23] 5109 240 126 35 

NU-111 [22], [6] 4930 241 (191)  138 (109) 35 

 

Table S2. Excess gravimetric and volumetric CH4 uptakes adsorbed on M(DABCO) at room temperatures. 

MOFs; 

CH4 adsorption  

Temperature (K); Pressure 

(bar) 
Ref. 

gravimetric uptake volumetric uptake 

cc(STP)/cc mg/g cm3/g 

     

Cu(DABCO)  216 302  298; 35 [38] 
Co(DABCO)  122 a 197 161 303; 35 [39] 

 140 a   303; 75 [39] 
Zn(DABCO) 125 a 199 164 303; 35 [40] 

 143 a   303; 75  [40] 
 170 a 242  298; 40  [41] 

Ni(DABCO) 124 a   298; 40 [41] 

a 𝑚𝑒𝑥𝑐  (mg/g) = 10∙ 𝑚𝑒𝑥𝑐  (wt.%). 
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Figure S1. The simulated isotherms for methane compared with available experimental (exp.) data: (a) 

CH4@Co(DABCO) at 303 K: GCMC simulations vs experimental data from ref. [39], (b) CH4@Cu(DABCO) at 298 K: 

GCMC simulations vs experimetal data from ref.  [38]. (c) CH4@Cu(DABCO) and (d) CH4@Cu(DABCO) at 298 K (in 

wt.% unit): GCMC simulations vs experimetal data from ref. [41]. Note that wt.% in our simulation calculated by 

𝑚 (wt. %) =
100∙𝑚CH4

(g)

(𝑚CH4+𝑚MOF)(g)
, and unknown by Lee et al. [41]. 

 

 

Figure S2. The correlation between the simulated surface area (𝐴BET) and the pore volume (𝑉𝑝) of M(DABCO) 

sorbents. Points indicate the pairs of 𝑉𝑝 and 𝐴BET. The solid line indicates the linear fitting. 
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Figure S3. The simulated CH4 adsorption isotherms of M(DABCO) with the total uptake (solid lines) and the excess 

uptake (dash lines) at 298 K and pressures up to 100 bar (in CH4 molecules/unit cell).  

 

Table S3. The amount of CH4 adsorption in M(DABCO) at 100 bar, 298 K in many different units compared to the molar 

mass of M(DABCO). 

M(DABCO)  

compounds 

Molar mass  

of M(DABCO) (g/mol) 

Total CH4 uptake  

(mg/g) 

CH4 molecules 

per unit cell 

Mass of CH4 (g) 

per mol of M(DABCO) 

M = Cu 463.29 182.39 6.452 103.35 

M = Fe 447.89 186.58 6.421 102.74 

M = Zn 466.96 189.59 6.751 109.24 

M = Co 454.06 194.05 6.753 109.32 

M = Ni 453.58 199.9 6.951 113.32 

M = Mn 446.07 202.22 6.936 113.07 

M = Mg 384.81 231.39 7.053 115.85 
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Table S4. Formation enthalpy (∆𝐻𝑓) of M2(BDC)2(TED) or M(DABCO) compounds. 

M(DABCO) M = Mg M = Mn M = Fe M = Co M = Ni M = Zn 

𝐻𝑓 (kJ/mol) -1532 -1369 -1497 -1458 -1351 -902 

Here, 𝐻𝑓 is the enthalpy of formation of the optimized M2(BDC)2(TED) compounds. It means that the more negative 

𝐻𝑓 is, the more stable the structure is. 𝐻𝑓 is computed by the formula 

2 M + 2 BDC + DABCO + O2 → M2(BDC)2(DABCO)+ 2 H2O, 

here, M = metal element, BDC = COOH − C6H4 − COOH [C8H6O4] and DABCO or TED = C6H12N2, M(DABCO) = 

M2(BDC)2(DABCO) 

∆𝐻𝑓 = 𝐸𝑡𝑜𝑡[M(DABCO)] + 2𝐸𝑡𝑜𝑡[H2O] − {2𝐸𝑡𝑜𝑡[M] + 2𝐸𝑡𝑜𝑡[BDC] + 𝐸𝑡𝑜𝑡[DABCO] + 𝐸𝑡𝑜𝑡[O2]} 

where 𝐸𝑡𝑜𝑡 is the total energy of compounds, obtained using vdW-DF calculations. 
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(a) CH4@Mg(DABCO) (b) CH4@Mn(DABCO) 

  

(c) CH4@Fe(DABCO) (d) CH4@Co(DABCO) 

  

(e) CH4@Ni(DABCO)  (f) CH4@Cu(DABCO) 

 

(g) CH4@Zn(DABCO) 

Figure S4.  The most stable CH4 adsorption sites on the metal cluster of M(DABCO).  
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(a) CH4@Mg(DABCO) (b) CH4@Mn(DABCO) 

 
 

(c) CH4@Fe(DABCO) (d) CH4@Co(DABCO) 

  

(e) CH4@Ni(DABCO) (f) CH4@Cu(DABCO) 

 

(g) CH4@Zn(DABCO) 

Figure S5. The most stable CH4 adsorption sites on the interface between the M-O-C cluster and TED of M(DABCO).  
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Figure S6. The symbols for the atoms (C1, C2, C3, O, N, and M) of M(DABCO) with M = Mg, Mn, Fe, Co, Ni, Cu, or 

Zn. Here, H atoms are omitted. 
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Figure S7. The overlap between the DOS of CH4 and the atoms of M(DABCO) on the adsorption site of the metal 

cluster.  
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Figure S8. The overlap between the DOS of CH4 and the atoms of M(DABCO) on the adsorption site of the M-O-C 

cluster – TED interface.  
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