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Abstract

:

In this paper, we study a problem of global optimization using common best proximity point of a pair of multivalued mappings. First, we introduce a multivalued Banach-type contractive pair of mappings and establish criteria for the existence of their common best proximity point. Next, we put forward the concept of multivalued Kannan-type contractive pair and also the concept of weak  Δ -property to determine the existence of common best proximity point for such a pair of maps.






Keywords:


common best proximity point; fixed point; contraction map; complete metric space; multivalued map; optimization




JEL Classification:


47H10; 54H25; 54E50












1. Preliminaries


Let   ( ℑ , ρ )   be a complete metric space and let   C B ( ℑ )   denote the class of all nonempty closed and bounded subsets of the nonempty set ℑ. For   A , B ∈ C B ( ℑ )  , the function   H : C B ( ℑ ) × C B ( ℑ ) → [ 0 , + ∞ )   defined by


  H  ( A , B )  = max {  sup  ξ ∈ B   Δ  ( ξ , A )  ,  sup  δ ∈ A   Δ  ( δ , B )  } ,  








where   Δ  ( δ , B )  =  inf  ξ ∈ B   ρ  ( δ , ξ )   , is a metric on   C B ( ℑ )  .



For any two non-empty subsets   A , B   of the metric space   ( ℑ , ρ )  , we shall use the following notations:


   A B  =  { θ ∈ A : ρ  ( θ , ξ )  = ρ  ( A , B )   for  some  ξ ∈ B }  ,  










   B A  =  { ξ ∈ B : ρ  ( θ , ξ )  = ρ  ( A , B )   for  some  θ ∈ A }  ,  








where   ρ ( A , B ) = inf { ρ ( θ , ξ ) : θ ∈ A , ξ ∈ B }  .



For   A , B ∈ C B ( ℑ )  , we have


  ρ ( A , B ) ≤ H ( A , B ) .  











  θ ∈ ℑ   is said to be a best proximity point (BPP, in short) of the multivalued map   Γ : ℑ → C B ( ℑ )   if   Δ ( θ , Γ θ ) = ρ ( A , B )  .   υ ∈ ℑ   is called a fixed point of the multivalued map   Γ : ℑ → C B ( ℑ )   if   υ ∈ Γ υ  .



Let   Ψ , Ω : A → C B ( B )   be two multivalued maps. An element    θ *  ∈ A   is said to be a common best proximity point (CBPP, in short) of  Ψ  and  Ω  if and only if


  Δ  (  θ *  , Ψ  θ *  )  = ρ  ( A , B )  = Δ  (  θ *  , Ω  θ *  )  .  











Remark 1.






	1. 

	
In the metric space   ( C B ( ℑ ) , H )  ,   θ ∈ ℑ   is a fixed point of Γ if and only if   Δ ( θ , Γ θ ) = 0  . In general,   θ ∈ Γ ξ   if and only if   Δ ( θ , Γ ξ ) = 0   for any   θ , ξ ∈ ℑ  .




	2. 

	
For two closed sets   A , B  , when   A ∩ B ≠ ϕ  , we have   ρ ( A , B ) = 0  . In that case, a fixed point and a BPP are identical.




	3. 

	
The function Δ is continuous in the sense that if    θ n  → θ   as   n → + ∞  , then   Δ  (  θ n  , A )  → Δ  ( θ , A )    as   n → + ∞   for any   A ⊆ ℑ  .




	4. 

	
A CBPP is an element at which the functions   θ → Δ ( θ , Ψ θ )   and   θ → Δ ( θ , Ω θ )   achieve a global minimum, for   Δ ( θ , Ψ θ ) ≥ ρ ( A , B )   and   Δ ( θ , Ω θ ) ≥ ρ ( A , B )   for all   θ ∈ A  .











The following lemmas are significant in the present context.



Lemma 1

([1,2]). Let   ( ℑ , ρ )   be a metric space and   A , B ∈ C B ( ℑ )  . Then





	1. 

	
  Δ ( θ , B ) ≤ ρ ( θ , γ )   for any   γ ∈ B   and   θ ∈ ℑ  ;




	2. 

	
  Δ ( θ , B ) ≤ H ( A , B )   for any   θ ∈ A  .







Lemma 2

([3]). Let   A , B ∈ C B ( ℑ )   and let   θ ∈ A  . If   p > 0  , then there exists   ξ ∈ B   such that


  ρ ( θ , ξ ) ≤ H ( A , B ) + p .  











In general, we may not obtain a point   ξ ∈ B   such that


   ρ ( θ , ξ ) ≤ H ( A , B ) .   











But when  B  is compact, then such a point ξ exists, i.e.,   ρ ( θ , ξ ) ≤ H ( A , B ) .  





The notion of P-property was introduced by Sankar Raj [4]. Further, the idea of weak P property was put forward by Zhang et al. [5] to improve the results of Caballero et al. [6] on Geraghty-contractions.



Definition 1

([4]). Let   ( ℑ , ρ )   be a metric space and   A , B   be two non-empty subsets of ℑ such that    A B  ≠ ϕ  . The pair   ( A , B )   satisfies the P-property if and only if   ρ  (  θ 1  ,  ξ 1  )  = ρ  ( A , B )  = ρ  (  θ 2  ,  ξ 2  )    implies   ρ  (  θ 1  ,  θ 2  )  = ρ  (  ξ 1  ,  ξ 2  )   , where    θ 1  ,  θ 2  ∈  A B    and    ξ 1  ,  ξ 2  ∈  B A   .





Definition 2

([5]). Let   ( ℑ , ρ )   be a metric space and   A , B   be two non-empty subsets of ℑ such that    A B  ≠ ϕ  . The pair   ( A , B )   satisfies the weak P-property if and only if   ρ  (  θ 1  ,  ξ 1  )  = ρ  ( A , B )  = ρ  (  θ 2  ,  ξ 2  )    implies   ρ  (  θ 1  ,  θ 2  )  ≤ ρ  (  ξ 1  ,  ξ 2  )   , where    θ 1  ,  θ 2  ∈ A   and    ξ 1  ,  ξ 2  ∈ B  .





The following well known lemma will be used in the sequel.



Lemma 3.

If   {  θ n  }   is a sequence in a complete metric space   ( ℑ , ρ )   such that   ρ  (  θ  n + 1   ,  θ n  )  ≤ λ ρ  (  θ n  ,  θ  n − 1   )    for all   n ∈ N  , where   λ ∈ ( 0 , 1 )  , then   {  θ n  }   is a Cauchy sequence.





BPPs under different types of contractive conditions have been studied in [7,8,9,10,11,12,13,14,15]. Moreover, BPPs for different kinds of multivalued mappings have been studied in [16,17,18,19]. Some more relevant works may be found in [20,21,22,23,24].



In this paper, we put forward the idea of multivalued Banach-type contractive pair (MVBCP, in short) and with the help of weak P property, establish conditions under which such a pair admits a CBPP. Next, we define the notion of weak  Δ -property and a multivalued Kannan-type contractive pair (MVKCP, in short) and prove an existence of CBPP result for that pair.




2. Common Best Proximity Point for MVBCP


In this section, first we define a MVBCP. The corresponding CBPP result follows.



Definition 3.

Let   ( ℑ , ρ )   be a metric space and   A , B   be two non-empty subsets of ℑ. The pair of mappings   Ψ , Ω : A → C B ( B )   is said to be a MVBCP if there exists   τ ∈ [ 0 , 1 )   such that


   H ( Ω θ , Ψ ξ ) ≤ τ ρ ( θ , ξ )   











for all   θ , ξ ∈ ℑ  .





Theorem 1.

Let   ( ℑ , ρ )   be a complete metric space and   A , B   be two non-empty closed subsets of ℑ such that    A B  ≠ ϕ   and that the pair   ( A , B )   satisfies the weak P-property. Let the pair of mappings   Ψ , Ω : A → C B ( B )   be a MVBCP such that   Ψ θ   and   Ω θ   are compact for each   θ ∈ A  , and further   Ψ θ ⊆  B A    and   Ω θ ⊆  B A    for all   θ ∈  A B   . Then Ψ and Ω have a CBPP.





Proof. 

Fix    θ 0  ∈  A B    and choose    ξ 0  ∈ Ω  θ 0  ⊆  B A   . By the definition of   B A  , we choose    θ 1  ∈  A B    such that


  ρ  (  θ 1  ,  ξ 0  )  = ρ  ( A , B )  .  



(1)







If    ξ 0  ∈ Ω  θ 1  ∩ Ψ  θ 1   , then we have


  ρ  ( A , B )  ≤ Δ  (  θ 1  , Ψ  θ 1  )  ≤ ρ  (  θ 1  ,  ξ 0  )  = ρ  ( A , B )  ,   since    ξ 0  ∈ Ψ  θ 1  ,  








and


  ρ  ( A , B )  ≤ Δ  (  θ 1  , Ω  θ 1  )  ≤ ρ  (  θ 1  ,  ξ 0  )  = ρ  ( A , B )  ,   since    ξ 0  ∈ Ω  θ 1  .  











Thus   ρ  ( A , B )  = Δ  (  θ 1  , Ψ  θ 1  )  = Δ  (  θ 1  , Ω  θ 1  )   , i.e.,   θ 1   is a CBPP of  Ψ  and  Ω . Therefore, assume that    ξ 0  ∉ Ω  θ 1  ∩ Ψ  θ 1   . Consider the case    ξ 0  ∉ Ψ  θ 1   .



Since   Ψ  θ 1    is compact, by Lemma 2 and the definition of MVBCP, there exist    ξ 1  ∈ Ψ  θ 1  ⊆  B A    and   τ ∈ [ 0 , 1 )   such that


  0 < Δ  (  ξ 0  , Ψ  θ 1  )  < ρ  (  ξ 0  ,  ξ 1  )  ≤ H  ( Ω  θ 0  , Ψ  θ 1  )  ≤ τ ρ  (  θ 0  ,  θ 1  )  .  



(2)







Since    ξ 1  ∈  B A   , there exists    θ 2  ∈  A B    such that


  ρ  (  θ 2  ,  ξ 1  )  = ρ  ( A , B )  .  



(3)







From (1), (3) and weak P-property, we have that


  ρ  (  θ 1  ,  θ 2  )  ≤ ρ  (  ξ 0  ,  ξ 1  )  .  



(4)







From (2) and (4), we have that


  ρ  (  θ 1  ,  θ 2  )  ≤ ρ  (  ξ 0  ,  ξ 1  )  ≤ τ ρ  (  θ 0  ,  θ 1  )  .  



(5)







If    ξ 1  ∈ Ω  θ 2  ∩ Ψ  θ 2   , then like earlier we can show that   θ 2   is a CBPP of  Ω  and  Ψ . Thus assume that    ξ 1  ∉ Ω  θ 2  ∩ Ψ  θ 2   . Consider the case    ξ 1  ∉ Ω  θ 2   . Since   Ω  θ 2    is compact, there exists    ξ 2  ∈ Ω  θ 2    such that


     0 < Δ  (  ξ 1  , Ω  θ 2  )  < ρ  (  ξ 1  ,  ξ 2  )      ≤ H ( Ω  θ 2  , Ψ  θ 1  )          ≤ τ ρ (  θ 1  ,  θ 2  ) .     



(6)







Since    ξ 2  ∈ Ω  θ 2  ⊆  B A   , there exists    θ 3  ∈  A B    such that


  ρ  (  θ 3  ,  ξ 2  )  = ρ  ( A , B )  .  



(7)







From (3), (7) and weak P-property, we have that


  ρ  (  θ 2  ,  θ 3  )  ≤ ρ  (  ξ 1  ,  ξ 2  )  .  



(8)







Also, from (5) and (6),


  ρ  (  ξ 1  ,  ξ 2  )  ≤ τ ρ  (  ξ 0  ,  ξ 1  )  .  



(9)







Continuing in this way, we obtain two sequences   {  θ n  }   and   {  ξ n  }   in   A B   and   B A   respectively, satisfying



(B1)   ξ  2 n   ∈ Ω  θ  2 n   ⊆  B A    and    ξ  2 n + 1   ∈ Ψ  θ  2 n + 1   ⊆  B A   ,



(B2)  ρ  (  θ  n + 1   ,  ξ n  )  = ρ  ( A , B )   ,



(B3)  ρ  (  θ n  ,  θ  n + 1   )  ≤ τ ρ  (  θ  n − 1   ,  θ n  )    and   ρ  (  ξ n  ,  ξ  n + 1   )  ≤ τ ρ  (  ξ  n − 1   ,  ξ n  )   ,



for each   n = 0 , 1 , 2 , …  .



From (B3) and Lemma 3, we observe that   {  θ n  }   and   {  ξ n  }   both are Cauchy sequences. Since  A  and  B  are closed subsets of a complete metric space, we conclude that  A  and  B  both are complete subspaces.



Hence, there exists   θ ∈ A   and   ξ ∈ B   such that    θ n  → θ   and    ξ n  → ξ   as   n → + ∞  .



We claim that   Ω  θ n    converges to   Ω θ  . Indeed, if   m > n  , then


     H ( Ω  θ n  , Ω θ )     ≤ H  ( Ω  θ n  , Ψ  θ m  )  + H  ( Ψ  θ m  , Ω θ )           ≤ τ [ ρ  (  θ n  ,  θ m  )  + ρ  (  θ m  , θ )  ]          → 0  as  n → + ∞ .     











Similarly, we can show that   Ψ  θ n    converges to   Ψ θ  .



From (B2) we have that


  ρ  (  θ  n + 1   ,  ξ n  )  = ρ  ( A , B )   








for each   n = 0 , 1 , 2 , …  .



This implies


      lim  n → + ∞   ρ  (  θ  n + 1   ,  ξ n  )  = ρ  ( θ , ξ )  = ρ  ( A , B )  .     



(10)







Again, we claim that   ξ ∈ Ω θ ∩ Ψ θ  . Since    ξ  2 n   ∈ Ω  θ  2 n    , we have


         lim  n → + ∞   Δ  (  ξ  2 n   , Ω θ )  ≤  lim  n → + ∞   H  ( Ω  θ  2 n   , Ω θ )  = 0 ,  (  since   Ω  θ n   converges  to  Ω θ )       ⇒    Δ ( ξ , Ω θ ) = 0 .     











Hence   ξ ∈ Ω θ  .



Also since    ξ  2 n + 1   ∈ Ψ  θ  2 n + 1    , we have


         lim  n → + ∞   Δ  (  ξ  2 n + 1   , Ψ θ )  ≤  lim  n → + ∞   H  ( Ψ  θ  2 n + 1   , Ψ θ )  = 0 ,  (  since   Ψ  θ n   converges  to  Ψ θ )       ⇒    Δ ( ξ , Ψ θ ) = 0 .     











Hence   ξ ∈ Ψ θ  . Therefore,


     ξ ∈ Ω θ ∩ Ψ θ .     



(11)







Finally, using (10) and (11) we have that


        ρ ( A , B ) ≤ Δ ( θ , Ψ θ ) ≤ ρ ( θ , ξ ) = ρ ( A , B )      ⇒    Δ ( θ , Ψ θ ) = ρ ( A , B ) ,     








and


        ρ ( A , B ) ≤ Δ ( θ , Ω θ ) ≤ ρ ( θ , ξ ) = ρ ( A , B )      ⇒    Δ ( θ , Ω θ ) = ρ ( A , B ) ,     











Hence  θ  is a CBPP of  Ω  and  Ψ . □





Next, we present an example in which the pair   ( A , B )   satisfies only the weak P-property but not the P-property.



Example 1.

Consider   ℑ =  R 2    with the Euclidean metric ρ. Let   A = { ( − 5 , 0 ) , ( 0 , 1 ) , ( 5 , 0 ) }   and   B = {  ( θ , ξ )  : ξ = 2 +   2 −  θ 2    , θ ∈  [ −  2  ,  2  ]  }  . Then   ρ  ( A , B )  =  3    and    A B  =  {  ( 0 , 1 )  }   ,    B A  =  {  (  2  , 2 )  ,  ( −  2  , 2 )  }   .



Define a pair of multivalued maps   Ω , Ψ : A → C B ( B )   in the following manner:


   Ω  ( − 5 , 0 )  =  {  ( 0 , 2 +  2  )  }  ,  Ω  ( 0 , 1 )  =  {  ( −  2  , 2 )  ,  ( 0 , 2 +  2  )  }  ,  Ω  ( 5 , 0 )  =  {  ( − 1 , 3 )  ,  ( 1 , 3 )  }  ,   











and


   Ψ  ( − 5 , 0 )  =  {  ( −  2  , 2 )  ,  ( − 1 , 3 )  }  ,  Ψ  ( 0 , 1 )  =  {  (  2  , 2 )  }  ,  Ψ  ( 5 , 0 )  =  {  (  2  , 2 )  ,  ( 1 , 3 )  }  .   











By routine calculations, it is easy to check that the condition


   H ( Ω θ , Ψ ξ ) ≤ τ ρ ( θ , ξ )   











is satisfied for all   θ , ξ ∈ ℑ   and for   τ =  19 20  ∈  [ 0 , 1 )   .



Thus the pair   Ψ , Ω   is a MVBCP.



Finally, we observe that


   ρ  (  ( 0 , 1 )  ,  (  2  , 2 )  )  = ρ  (  ( 0 , 1 )  ,  ( −  2  , 2 )  )  =  3  = ρ  ( A , B )  ,   











but


   ρ  (  ( 0 , 1 )  ,  ( 0 , 1 )  )  = 0 < ρ  (  (  2  , 2 )  ,  ( −  2  , 2 )  )  = 2  2  .   











Thus,   ( A , B )   satisfies weak P-property, but not the P-property. Therefore, all conditions of Theorem 1 are satisfied and since   Δ  (  ( 0 , 1 )  , Ψ  ( 0 , 1 )  )  = Δ  (  ( 0 , 1 )  , Ω  ( 0 , 1 )  )  =  3  = ρ  ( A , B )   , we conclude that   ( 0 , 1 )   is a CBPP of Ψ and Ω.






3. Common Best Proximity Point for MVKCP


In this section, we define the concepts of weak  Δ -property and a MVKCP. Combining these two concepts, we establish a CBPP result.



Definition 4.

Consider the metric space   ( C B ( ℑ ) , H )   and let   A , B   be two non-empty subsets in   C B ( ℑ )   such that    A B  ≠ ϕ  . The pair   ( A , B )   is said to have the weak Δ-property if and only if   Δ ( θ , U ) = ρ ( A , B ) = Δ ( ξ , V ) )   implies   ρ ( θ , ξ ) ≤ H ( U , V )  , for all   θ , ξ ∈  A B    and   U , V ⊆  B A   .





Definition 5.

Let   ( ℑ , ρ )   be a metric space and   A , B   be two non-empty subsets of ℑ. The pair of mappings   Ψ , Ω : A → C B ( B )   (Ψ and Ω may be identical) is said to be a multivalued Kannan-type contractive pair (MVKCP, in short) if there exists   λ ∈ [ 0 , 1 )   such that


   H  ( Ω θ , Ψ ξ )  ≤  λ 2   [ Δ  ( θ , Ω θ )  + Δ  ( ξ , Ψ ξ )  − 2 ρ  ( A , B )  ]    



(12)




for all   θ , ξ ∈ ℑ  .





Remark 2.

If   Ψ , Ω   is an MVKCP, the condition (12) is satisfied when   Ψ = Ω   as well.





Definition 6

([25]). Let   ( ℑ , ρ )   be a metric space and R be a self-map on ℑ. R is said to be a Kannan mapping if there exists   0 ≤ λ <  1 2    such that


  ρ ( R θ , R ξ ) ≤ λ { ρ ( θ , R θ ) + ρ ( ξ , R ξ ) } ,  











for all   θ , ξ ∈ ℑ  .





Remark 3.

If   ( ℑ , ρ )   is a complete metric space, then a Kannan mapping on ℑ possesses a unique fixed point.





Now we present the main result of this section.



Theorem 2.

Let   ( ℑ , ρ )   be a complete metric space and   A , B   be two non-empty closed subsets of ℑ such that    A B  ≠ ϕ   and that the pair   ( A , B )   satisfies the weak Δ-property. Let the pair of mappings   Ψ , Ω : A → C B ( B )   be a MVKCP such that   Ψ θ ⊆  B A    and   Ω θ ⊆  B A    for all   θ ∈   A ¯  B   . Then Ψ and Ω have a CBPP.





Proof. 

Define the map   Γ : Ω  (   A ¯  B  )  →  A B    by


  Γ  ( S )  = { θ ∈  A B  : Δ  ( θ , S )  = ρ  ( A , B )  } ,  



(13)




for all   S ∈   A ¯  B   . The map  Γ  is well defined, for if   Γ  ( S )  =  θ 1    and   Γ  ( S )  =  θ 2   , then   Δ  (  θ 1  , S )  = ρ  ( A , B )    and   Δ  (  θ 2  , S )  = ρ  ( A , B )   . By weak  Δ -property, we have   ρ  (  θ 1  ,  θ 2  )  ≤ H  ( S , S )  = 0  , i.e.,    θ 1  =  θ 2   .



From (13), we have   Δ ( Γ ( Ω θ ) , Ω θ ) = ρ ( A , B )   and   Δ ( Γ ( Ω ξ ) , Ω ξ ) = ρ ( A , B )   for any   θ , ξ ∈   A ¯  B   .



Again, using the weak  Δ -property, we have


     ρ ( Γ ( Ω θ ) , Γ ( Ω ξ ) )     ≤ H ( Ω θ , Ω ξ )          ≤  λ 2   [ Δ  ( θ , Ω θ )  + Δ  ( ξ , Ω ξ )  − 2 ρ  ( A , B )  ]           ≤  λ 2   [ ρ  ( θ , Γ  ( Ω θ )  )  + Δ  ( Γ  ( Ω θ )  , Ω θ )  + ρ  ( ξ , Γ  ( Ω ξ )  )  + Δ  ( Γ  ( Ω ξ )  , Ω ξ )  − 2 ρ  ( A , B )  ]           =  λ 2   [ ρ  ( θ , Γ  ( Ω θ )  )  + ρ  ( ξ , Γ  ( Ω ξ )  )  − 2 ρ  ( A , B )  ]  ,     








for any   θ , ξ ∈   A ¯  B    and   λ ∈ [ 0 , 1 )  .



It means that the composition map   Γ o Ω :   A ¯  B  →   A ¯  B    is a Kannan map from    A ¯  B   to itself, which is a complete metric space.



Thus,   Γ o Ω   has a unique fixed point   θ 1  , i.e.,   Γ o Ω  (  θ 1  )  =  θ 1  ∈  A B   , which implies that   Δ  (  θ 1  , Ω  (  θ 1  )  )  = ρ  ( A , B )   .



Similarly, we can define   Π : Ψ  (   A ¯  B  )  →  A B    and obtain a unique fixed point   θ 2   of   Π o Ψ   and consequently   Δ  (  θ 2  , Ψ  (  θ 2  )  )  = ρ  ( A , B )   .



Using the weak  Δ -property, we have that


     ρ (  θ 1  ,  θ 2  )     ≤ H ( Ω  θ 1  , Ψ  θ 2  )          ≤  λ 2   [ Δ  (  θ 1  , Ω  θ 1  )  + Δ  (  θ 2  , Ψ  θ 2  )  − 2 ρ  ( A , B )  ]           = 0 ,     








which implies that    θ 1  =  θ 2  = θ   (say).



Therefore,   Δ ( θ , Ω ( θ ) ) = Δ ( θ , Ψ ( θ ) ) = ρ ( A , B )  . Thus  θ  is a CBPP of  Ω  and  Ψ . □






4. Conclusions


The concepts of MVBCP, MVKCP and weak  Δ -property have been introduced in this paper. Using weak P-property, a CBPP result has been proved for a MVBCP and using the weak  Δ -property, a similar result has been established for a MVKCP. The current study is interesting because the proof of our main theorem in Section 2 provides us with a scheme on how to find a CBPP for two multivalued maps. An application of the same has also been discussed in Example 1.
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