
Supplementary Material 

Title: A deep learning radiomics nomogram to predict response to neoadjuvant 

chemotherapy for locally advanced cervical cancer: A two-center study 

Supplementary S1: The Sample Size estimation 

The sample size of the training dataset and internal and external validation datasets were 

assessed. To avoid overfitting, the number of predictors should be kept within 1/20-1/8 of the 

sample size in the training dataset. In this study, there are 142 patients in the training dataset. 

10 handcrafted and 8 DL-based radiomcs features were selected to build deep learning 

radiomics nomogram (DLRN) to predict NACT response.   



Supplementary S2: Tumor Segmentation and Image Preprocessing 

All patients enrolled in both centers had scan settings that were similar but with distinct 

systems and parameters. To improve feature discrimination, many preprocessing procedures 

were applied before extracting quantitative features. Nonlinear intensity normalization and 

gray-level quantization were used to transform MR images to standardized intensity ranges 

and map the whole intensity range of the tumor location to distinct gray levels [1, 2]. Finally, 

images were resampled to an isotropic pixel size using bilinear interpolation. 

For deep features, we cropped the MR images by finding a rectangular ROI that enclosed 

the outlined tumor. Then we resized the tumor patch to a 224 × 224 square to fulfill the 

requirement for the input size of the pretrained CNN model that we used. Also considering 

that the CNN model that we used was pretrained on natural images with a color range of 0－

255, we normalized the intensity of tumor patch images to the same color range. By 

determining a rectangular ROI that contained the tumor contour, we cropped the MR images 

in order to extract their deep features. The tumor patch was then adjusted to a 224 × 224 

square to meet the input size requirement of the pretrained CNN model that we utilized. 

Given that the CNN model we utilized was trained on natural pictures with a color range of 

0-255, the intensity of tumor patch images was normalized to the same color range. 
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Supplementary S3: Feature extraction methodology 

Feature extraction included handcrafted radiomics features and deep learning based 

radiomics features. Note that, all features were normalized by Z-score method into a 

standardized value range.  

Axial T2WI, DWI and CE-T1WI images retrieved from the picture archiving and 

communication system (PACS, Carestream), which were then loaded into ITK-SNAP 

software (3.8.0, www.itksnap.org) for manual segmentation. The segmentation files were 

stored in Neuroimaging Informatics Technology Initiative (NIfTI) format. Radiologists were 

blinded to the patients’ clinical information. Since the boundary between a tumor and nearby 

normal soft tissues is not always well defined, a conservative approach to contouring was 

taken to remain within the tumor, even at the risk of not including a small part of tumor 

edges. As a result, such VOI was defined for each patient for radiomics feature extraction. 

Details of the pyradiomics code is as follow: 

import numpy as np 

import pandas as pd 

from radiomics import featureextractor 

from sklearn.utils import shuffle 

import os 

import seaborn as sns 

import SimpleITK as sitk 

import radiomics 

dataDir = ʹaddress//ʹ  

para = ʹC://Users//user//Params2.yamlʹ 

extractor = featureextractor.RadiomicsFeatureExtractor(para) 

folderList = os.listdir(dataDir)   

df = pd.DataFrame() 

for folder in folderList: 

    imageName = dataDir+folder+ʹ//data.niiʹ                                       

    maskName = dataDir+folder+ʹ//mask.niiʹ  

    featureVector = extractor.execute(imageName,maskName) 



    df_add = pd.DataFrame.from_dict(featureVector.values()).T                     

    df_add.columns = featureVector.keys()  

    df_add.insert(0,ʹPatientʹ,folder)  

    df = pd.concat([df,df_add]) 

    print(str(folder)+ʹextracted featureʹ) 

df.to_excel(dataDir+ʹname.xlsxʹ)  

In our study, a total of 3669 imaging features for each patient were extracted, of which 

1223 features were from the three examined modalities (T2W, DWI and CET1W), respectively. 

All radiomics features were calculated automatically with the Pyradiomics software. The 1223 

features could be divided into these categories:  

a. 234 first-order statistics features,  

b. 14 shape-based features,  

c. 312 gray level co-occurrence matrix (GLCM) features,  

d. 208 gray level run length matrix (GLRLM) features,  

e. 208 gray level size zone matrix (GLSZM) features,  

f. 65 neighboring gray tone difference matrix (NGTDM) features, 

g. 182 gray level dependence matrix (GLDM) features.   

The detailed information of these features was available in the documentation for 

PyRadiomics, http://PyRadiomics.readthedocs.io/en/latest/). 

(1) First-order statistics features  

First-order statistics are generally used and basic metrics to explain the distribution of voxel 

intensities inside the image region defined by the mask. 234 first-order statistics features were 

retrieved in total. 

(2) Shape-based 3D features 

Descriptors of the three-dimensional size and shape of the region of interest were included in 

this category of characteristics (ROI). Because these characteristics are independent even by 

gray level intensity distribution in the ROI, they can only be estimated on the non-derived 

picture and mask. In this work, we retrieved 14 shape-based characteristics. 

(3) Statistics-based textural features 

Statistics-based textural features can reflect the homogeneity phenomenon of the images and 



the arrangement of the properties that change slowly or periodically on the body surface. 

Textural features extracted in our study included types of matrix features, including 312 

gray-level co-occurrence matrix (GLCM) features, 208 gray-level run length matrix (GLRLM) 

features, 208 gray-level size zone matrix (GLSZM) features, 65 Neighbouring Gray Tone 

Difference Matrix (NGTDM), and 182 gray-level dependence matrix (GLDM) features. 

Determining the texture matrix representations requires the voxel intensity values within the 

volume of interest (VOI) to be discretized. Voxel intensities were therefore resampled into 

equally spaced bins using a bin-width of 25 gray levels. This discretization step not only 

reduces the image noise but also normalizes the intensities across all patients, allowing for a 

direct comparison of all the calculated textural features between patients.  

A GLCM defines each pixelʹs distance and angle and determines the correlation between 

two gray levels with different directions and distances. GLCM can reflect integrated 

information about the imagesʹ direction, interval, amplitude, and frequency. The run length 

metrics in GLRLM quantify the gray level runs in a picture. A gray level run is defined as the 

number of pixels and the number of consecutive pixels with the same gray-level value. A 

GLSZM specifies the number of homogenous related zones with a specific size and intensity 

inside the tumor volume, representing tumor heterogeneity on a regional scale. 

(4) Wavelet and LoG filtration features  

Two image filters, wavelet and LoG were applied to original image respectively and yield a 

corresponding derived image. A LoG spatial band-pass filter was used to derive image 

features at different spatial scales by turning the filter parameter with 3.0 and 5.0. Wavelet 

transformation effectively decouples the textural information by decomposing the original 

image in low- and high-frequencies. In our present study, a discrete, one-level and 

undecimated three-dimensional wavelet transformation was applied to each MRI image, 

which decomposed the original image into 8 decompositions. Consider L and H to be 

low-pass and high-pass functions, respectively, X to be the decomposing image, and the 

wavelet decompositions of X to be labeled as XLLL, XLLH, XLHL, XLHH, XHLL, XHLH, 

XHHL, XHHH. Then, eight new images that are decomposed in three directions (x, y, z) can 

be obtained. Since the applied wavelet decomposition is undecimated, the size of each 

decomposition is equal to the original image and each decomposition is shift invariant. Thus, 



the original tumor delineation of the tumor volume can be applied directly to the 

decompositions after wavelet transformation.  

Supplementary S4: Synthetic Minority Oversampling Technique (SMOTE) 

The SMOTE algorithm was applied to create synthetic samples according to k-nearest 

neighbour of each minority class sample to balance the number of two-class sample [3, 4]. The 

advantage of this method was to obtain the synthetic virtual samples that have similar 

attribution values to the existing samples, thus enhancing the representation of the minority 

group while retaining the original structure of the samples. The SMOTE algorithm was 

performed by using R function of “SMOTE” in “DMwR” package. If there were N1 samples 

for the minority while N2 samples for the majority in the training dataset, the dataset could 

be balanced by using SMOTE algorithm at the given oversampling ratio a (%) and 

undersampling ratio b (%) based On K-nearest algorithm at a given K value. Firstly, the 

minority class samples were augmented based on K-nearest algorithm (K = 5) to result in a 

new minority class samples: the minority class sample= N1+a*N1/100Secondly, the majority 

class samples could be undersampled at a ratio of b (%) to result in a new majority sample: 

the majority class = (b/100)*(a*N1/100) Finally, the SMOTE training dataset included the new 

minority and majority class samples.  
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mutational status and ALK rearrangement in patients with non-small cell lung cancer. Radiol. 

Med. 2021, 126, 786-794.  

[4] Wu, H.; Wu, C.; Zheng. H.; et al. Radiogenomics of neuroblastoma in pediatric patients: 

CT-based radiomics signature in predicting MYCN amplification. Eur. Radiol. 2021, 31, 

3080-3089.  

Supplementary S5: The Statistical Analysis and Packages of R Software 

The ROC curves were plotted using the “pROC” package. Kaplan-Meier curve, nomogram 

construction and calibration plot were analyzed using the ʺrmsʺ and ʺsurvivalʺ packages. The 

Hosmer-Lemeshow test was performed using the ʺ Resource Selectionʺ package. Decision 

curve analysis was performed with the function of “dca.R”. All statistical tests were two-sided, 

and p values of <0.05 were considered significant.  



Table S1 All patients underwent standard pretreatment pelvic MRI with 3.0T MR scanners 

from two centers. 

 Center 1 Center 2 

Parameters 
GE 3.0T 

(Signa HDxt) 

SIEMENS 3.0T 

(Magnetom Skyra) 

GE 3.0T 

(Signa HDxt) 

Sequence T2WI DWI CE-T1WI T2WI DWI CE-T1WI T2WI DWI CE-T1WI 

TR/TE (ms) 3400/100 7500/50 3.3/1.3 3400/80 4500/60 3.25/1.22 3740/102 4160/30 4.3/1.7 

Matrix 288×256 132×128 128×128 256×256 128×128 256×256 320×240 128×128 256×320 

Slice gap 

(mm) 
2 0 0 6.1 0 0 1.2 0 0 

Slice thickness 

(mm) 
6 3 2 5 4 3 5 3 1 

CE-T1WI was obtained using T1-weighted fat-suppression images and a three dimensional 

(3D) liver acceleration volume acquisition (LAVA) sequence during the injection of 0.2 

mmol/kg of magnevist (Gadopentetic Acid Dimeglumine Salt Injection) at a rate of 2.0 ml/s 

and following a 40-mL saline flush at the same rate. The contrast medium was injected after 

the acquisition of three sets of pre-contrast T1 mapping.  



Table S2 Parameters of the Densenet-121 model 

Layers Output size Size and stride 

Convolution 112×112 2,77 strideconv×  

Pooling 56×56 2,max33 stridepool×  

Denseblock (1) 56×56 6
33
11

×







×
×
conv
conv

 

Translation Layer (1) 
56×56 conv11×  

28×28 2,22 stridepoolaverage×  

Denseblock (2) 28×28 12
33
11

×







×
×
conv
conv

 

Translation Layer (2) 
28×28 conv11×  

14×14 2,22 stridepoolaverage×  

Denseblock (3) 14×14 24
33
11

×







×
×
conv
conv

 

Translation Layer (3) 
14×14 conv11×  

7×7 2,22 stridepoolaverage×  

Denseblock (4) 7×7 16
33
11

×







×
×
conv
conv

 

Classification Layer 
1×1 poolaverageglobal77×  

28×28 max,1000 softconnectedfullyD −  

 


