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Idea

@ Wald's solution - rotating black hole immersed in a uniform
magnetic field

@ generalisation of Wald's solution: we take into account the
effects of nonlinear electrodynamics (NLE)

@ NLE Lagrangian density - a smooth function of two
electromagnetic invariants



Motivation

Astrophysical observations

@ EM fields surround astrophysical black holes

e needed to explain jets of matter coming from active galactic
nuclei?

e magnetars possess extreme magnetic fields (up to 10*T) -
NLE effects could be noticed

Theoretical research

@ EM potentials and charges appear in laws of black hole
thermodynamics

@ NLE models might "regularise” black hole singularities



Killing vectors as gauge fields

The source-free Maxwell’s equations:

dF =0
dxF=0

ansatz: F = dK, where K? is a Killing vector field
@ by definition dF =0
o the Killing lemma: V,V?K? = —R2. K¢

@ in vacuum spacetimes: R, =0,s0d*x F =0

— Killing vectors satisfy the source-free Maxwell's equations
— F is a test EM field



Wald’s solution

Kerr black hole in an asymptotically homogeneous magnetic field
@ k = 9/0t stationary Killing vector

m = 9/9¢ axial Killing vector

B field strength at infinity

Test electromagnetic field 2-form:

a = J/M ratio of black hole’'s angular momentum J and mass M

F= %Boo(Qadk + dm)

Electric charge: Qs = ﬁ fsoo «F = Boo(—2aM +2J) =0 1)
Magnetic charge: P, = = fsoo F=0

M8, denotes sphere at infinity



Nonlinear electrodynamics

Generalised Maxwell's equations:

dF =0
d+Z =0, with Z=—4(LsrF + Lg * F)

Notation: L. denotes 0,L
Electromagnetic invariants: F = Fo,F?®, G = F,p % F

Notable NLE Lagrangians:
o Euler-Heisenberg theory 1-loop QED correction
LOEH) = 1ry 360m4 (472 +7G%)

@ Born-Infeld theory - phenomenological

£ = p? (1_ L+ 55 1%/2;4) = —3F +tpp(F2+G)+...



Generalisation of Wald's solution to NLE

We are looking for an exact solution of NLE Maxwell's equations:

1) using the basic ansatz F = dK

o d* Z = 0 gives terms of the form £xK,; = Kb£xgab(2) which
are not necessarily zero

2) taking the rescaled Killing vector field
o F=d(yK)®

e dx Z = 0 gives nonlinear differential equation for ¢ with no
closed-form solution

— as these attempts don't work, we will use perturbative expansion
around Wald’s solution

@IX? =Vv°F
()4 is an arbitrary function



Perturbative approach

@ expansion of Lagrangian density with respect to coupling
constant A:

L(F,G) = —%J—"-‘r M(F,G) + O(N?)

@ ansatz: A, = K, + Av, + O()\?)
v is the lowest order correction to gauge potential

o F = Fy+ Adv+ O(N\?)
@ NLE Maxwell's equations:

dF =0 - immediately satisfied
dx Z = 0 - gives master equation for v:

dx dv = xJapr;
Jotr = 4(£_7:]:d.7: ar e]:gdg)o A *xdK — 4(59}‘0'.7: = €ggdg)o N dK

Notation: £, denotes 0x0,¢, subscript 0 means "evaluated at zeroth order of
perturbative expansion”



Perturbative approach

We focus on two aforementioned NLE theories:

Born-Infeld Euler-Heisenberg

p(BI) — F2 + g2 ¢(EH) 4F2 + 7g2'
EH) _ _o?

APD = ﬁ A = 360m?

@ both Lagrangians are of the form ¢ = pF? + qG2, so {rg =0

@ master equation reduces to:

dxdv=4(LrrdF)o AxdK — 4(lggdG)o N dK




Validity of perturbative approach

gravitational length scale: L,

Orders of magnitude

o Einstein's tensor: L;?
o magnetic field energy density: B2/(2.0)

test field approximation is valid if Lgf2 > 41GB?/(c* o)
Lg - Schwarzschild radius ~ 3(M/Mg) - 103m

IB| < (Mg/M) - 10'5T fulfilled for strongest magnetic fields
as long as M < 10*M,

— EM field exhibits nonlinear behaviour, but allows test field
approximation



Schwarzschild black hole

Schwarzschild spacetime

@ static, spherically symmetric vacuum solution

ds? = —(1— 2M)qge? + (ﬁﬁl) + r2(d6? + sin?0d¢?) J

r

for K2 = ak" + Bm?, the corresponding invariants are:
o Fop=— 2+8( —sm )ﬂ2
° Go= —16/\/1“;—;9 5
as a « J in Wald's solution, a =0
master equation d x dv = 46({rxrdF)o A *xdm gives
v =283M(lrz)o(4(2r — 5M)cos(20) + (M — 2r)(3 + cos(46))d¢



Magnetic scalar potential

"nonlinear H field": H, = K? x Zp,
o for symmetry inheriting fields H is a closed form
@ we can introduce scalar magnetic potential T: H = —d7T

expanding with respect to coupling constant \:
T=Vo+A\V; + O(/\2)

from Wald's solution: Vg = —Boo( — %)rcos&

Maxwell's equation translates to:

v2(Yu) = 16pv2 (T v, v )

solution: Wy (r,0) = 4pB3 (1 — 21)(4r — 5M + Mcos(20))cost
— in agreement with v



Asymptotic behaviour

Our solution should:
1) represent asymptotically homogeneous magnetic field
Check:
@ F at spatial infinity:
dv dv
lim, oo EFO;:Z =0, lim,_s EFO;Z =
asymptotically,
F = Fo = B.odm = Boo(rsin®0dr A d¢+ r’cosfisinfddf A d¢)

e same form as F for homogeneous magnetic field B, dz in
Minkowski spacetime

we can choose normalisation of v as 8 = %BOO



Asymptotic behaviour

2)give @=0and P=0

Check:

@ Komar integrals for electric and magnetic charge:
Qoo = ﬁ fsoo *Z

o expansion: xZ = xFq + (4(—Lx*F + lgF)o + *dv)\ + O()\?)
o (r =2F, lg =2G, lim,_o Fo = 83>
° (¥Fo)op, =0, (xdv)e, =0

— @ =0 at the O(\!) order

OO = Ir fsoo

e sin(20) and sin(46) terms in (dv)g, vanish after integration

— P =0 at the O(\!) order



Correction to F

Decomposition: F = Fg + 0.F

o 0F = —16AB* M(lrx)oF1 + O(N?),
1

Fi=——mr
' 6B M(Lrr)o

(dm)ap(dv)?®

Local maxima of Fi:
e r~3.8M, 0L ~60.3°
e r~38M, 6_ ~119.7°

@ implications for trajectories of charged particles?



Contour plots in r — @ plane

M =1, black hole horizon is represented by the black circle in the middle

Left: Contour plot of F;
Right: Contour plot of relative correction 832F;/F



Open questions

1) generalisation to non-static, i.e. Kerr black hole
@ obstacle: Fy and Gy have complicated forms and,
consequently, current Jog
2) spherically symmetric, highly conducting star immersed in NLE
fields

@ boundary condition: n?V,T = 0 at star's surface (n” is a normal
to star’s boundary)

@ we get linear nonhomogeneous partial differential equation for

T
@ obstacle: its solution is an infinite series
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