
Supporting Information for

Applying a deep-learning-based keypoint detection in analyzing surface

nanostructures

Table of Contents

1. YOLOv7 model structure

2. Image augmentation techniques

3. More recognition cases

4. Precision, recall, and mAP

5. Comparison with other ML models

6. User guideline

7. Methods

8. References

1. YOLOv7 model structure

a) YOLOv7 Overall Structure

First, the input image is resized to 640×640 [1] and it is input into the backbone

network. Then, three layers of feature maps of different sizes are output through the

head layer network. The predictive results are outputted through Rep and conv. Here,

taking the COCO dataset as an example, 80 categories are output, and then each output

(x, y, w, h, and o) is the coordinate position and background; 3 refers to the number of

anchors, so each layer output is (80+5)×3 = 255 times the size of the feature map, which

is the final output.

Figure S1. The Backbone and Head of YOLOv7.

b) Backbone

There are a total of 50 layers, first passing through 4 convolutional layers, mainly
consisting of Conv + BN + SiLU [1] (hereinafter referred to as CBS). After four CBSs,
the feature map changes to 160 * 160 * 128 size. Then, it goes through the ELAN
module. ELAN is composed of multiple CBSs, and the sizes of the input and output
features remain unchanged. The number of channels will change in the first two CBSs,
and the input channels are consistent with the output channels in the subsequent ones.

After the last CBS, the output is the required channel. Overall, the backbone passes

through four CBSs, then connects to an ELAN, and then there are three MP + ELAN

outputs corresponding to the outputs of C3/C4/C5 with sizes of 80 * 80 * 512, 40 * 40

* 1024, and 20 * 20 * 1024, respectively. Each MP has 5 layers, and ELAN has 8 layers,

so the total number of backbone layers is 4 + 8 + 13 * 3 = 51 layers. Starting from 0,

the last layer is the 50th layer.

c) Head
YOLOv7 Head is actually a "pafpn" structure, the same as in the previous

YOLOv4 and YOLOv5. First, for the 32-fold down-sampling feature map C5 outputted

by the backbone, it goes through SPPCSP, and the number of channels changes from

1024 to 512. First, it fuses with C4 and C3 in a top-down manner to obtain P3, P4, and

P5; then, it fuses with P4 and P5 in a bottom-up manner. This is basically the same as

YOLOv5. The difference is that the CSP module in YOLOv5 has been replaced with

the ELAN-H module, and the down-sampling has become the MP2 layer. For the P3,

P4, and P5 outputs by "pafpn", the number of channels is adjusted through RepConv,

and finally the 1×1 convolution is used to predict the class, keypoint [2], and bounding

box.

2. Image augmentation techniques
We used the imgaug [3] library for data augmentation. While some data

augmentation methods may not be obvious to humans, they render a completely new

image for the computer, which is extremely useful for machine learning. In Table S1,

we demonstrate the changes brought about by each different data augmentation method

to the images.

Table S1. Effects and descriptions of different image augmentation techniques.
Augmentation
techniques Image example Description

None

The original image

CoarseDropout

A coarser version of
dropout that generates
larger missing areas.

Elastic

Transform images by
moving pixels locally
around using
displacement fields.

Blurring

A Gaussian blur that
simulates blur due to the
camera being out of focus.

Brightness

An operation that adjusts
the brightness and will
simulate various color
conditions.

Hue

An operation that adds a
value directly to the hue
and will shift the color
tones in the image.

Dropout

Set a certain fraction of
pixels in images to zero.

Saturation

An operation that adds a
value directly to the
saturation and will change
the intensity of colors in
the image.

Rotation

Rotate image.

Vertical flip

Flip the image upside
down.

Horizontal flip

Flip the image left to right.

Diagonal flip

Flip the image diagonally.

Table S2. Different combinations of data augmentation.
 Operation
S1 Rotation, vertical, horizontal, and diagonal flips

S2 Blurring, dropout, and elastic
S3 Hue, saturation, and brightness

3. More recognition cases
In addition to the examples shown in the main text, we also conducted molecule

identifications for other STM images. Under the same parameters, we achieved good

performances of image recognitions and keypoint identifications. The following images

show some examples. The first shows the identification of single-component molecules

(Figure S2). Figure S3 shows the identification of dual-component molecules.

Figure S2. identification of single-component molecules.

Figure S3. Identification of dual-component molecules.

Figure S4a shows the STM image of two highly similar molecules, molecule 1 and
molecule 2. Figure S4b represents the detection results obtained by our model, where
the blue bounding box corresponds to molecule 1 and the orange bounding box
corresponds to molecule 2. Our model demonstrates an almost excellent detection
accuracy, revealing its capability to identify molecules that even the human eye might
struggle to differentiate due to their high similarity.

From these three additional examples, we are convinced of the accuracy of our model.

Figure S4. Identification of two highly similar molecules.

4. Precision, recall, and mAP
Precision, recall, and mean Average Precision (mAP) [4] are widely used

performance metrics in the field of information retrieval and machine learning.

Precision refers to the proportion of correctly identified positive results among the total

returned results. It is also called positive predictive value. It is defined as

Precision = TP / (TP + FP)
where TP is the number of true positives and FP is the number of false positives. High

precision indicates a low false-positive rate.

Recall, also known as sensitivity, hit rate, or true-positive rate, is the ratio of

correctly identified positive results to the total actual positive cases. It is defined as

Recall = TP / (TP + FN)
where FN is the number of false negatives. High recall indicates that the model returns

most of the relevant results.

Mean Average Precision (mAP) is a comprehensive metric used in information

retrieval to measure the effectiveness of ranking algorithms in terms of both recall and

precision. mAP calculates the average precision values at the point of each relevant

document in the ranked order of retrieval. The formula involves calculating the Average

Precision (AP) for each query and then taking the average over all queries:

mAP = (1 / Q) * Σ (APq)
where Q is the total number of queries and APq is the Average Precision at each query,
q. These metrics are critical for understanding the trade-off between precision and

recall, which is vital for evaluating models in many tasks, particularly in scenarios
where false positives and false negatives have different costs.

5. Comparison with other ML models
Table S3. Comparison of other deep-learning models.

 YOLO (You Only
Look Once)

U-Net Traditional
CNN

(Convolutional
Neural Network)

Task Object detection
Image

segmentation
Various computer

vision tasks
Architecture CNN-based with

anchor boxes
CNN-based with
encoder–decoder CNN-based with

various
architectures

Network structure Simple architecture
using

convolutional
layers

Encoder extracts
features and

decoder
maps features
segmentation

masks

Multiple layers
(convolutional,

pooling, and fully
connected) for

feature extraction
Data requirements

Labeled dataset
with object

bounding box
annotations and

class labels

Labeled dataset
with pixel-level

class labels

Labeled dataset
suitable for the

specific task

Advantages Fast inference,
capable of real-

time object
detection

Capable of pixel-
level image

segmentation,
good performance

in detailed
segmentation tasks

Effective feature
extraction, suitable

for various
computer vision

tasks

Disadvantages
May have poor
performance in
detecting small

objects and higher
false-positive rates

Relatively slower
compared to

YOLO, requires
more training data

Performance may
vary depending on
the specific task
and architecture

From the above, it is clear that U-Net requires a larger dataset, while our STM images
are obtained from our own laboratory, making it difficult to provide a large dataset.

Therefore, we are seeking a model that can work with a small amount of data.
Additionally, we are interested in obtaining information regarding molecular keypoints,
which is inaccessible through semantic segmentation models. Furthermore, considering
future research projects, we require a model with excellent real-time detection
capabilities to perform live scanning and data analysis with STM imaging. Considering
all these factors, we chose the YOLO model.

6. User guideline

6.1 Programming environment requirements
Python 3.8 https://www.python.org/ We strongly recommend using anaconda to

manage the python environment.

Pytorch 1.12.1 https://pytorch.org/ The main body of our YOLOv7 code comes from

an open-source project. We also strongly recommend downloading the GPU version of

pytorch.

Numpy 1.23.3 We suggest selecting a suitable version for numpy, otherwise the code

would run incorrectly.

cudnn 8.1.10, cudatoolkit 11.3 If one wants to correctly use GPU resources and

download the right version of Pytorch, one must determine the cudnn and cudnntoolkit

versions and follow the guide document in which Pytorch gives the right version to

choose.

Imgaug 0.4.0 https://github.com/aleju/imgaug-doc imgaug is a library for image

augmentations in machine learning projects.

Note: In the above we only list the important libraries and corresponding precautions.

The detailed program running environment is accessible publicly: https://github.com

/gggg0034/yolov7_keypoint.

6.2 References of the hardware requirements

CPU 12th Gen intel(R) Core i9 – 12900H

GPU NVIDIA GeForce RTX 3070Ti Laptop GPU 8G

Memory 32G

1 epoch time cost：≤ 8 minutes

Max batch-size: 5 images

Note: The above computer hardware configuration is just for reference. We recommend

using a graphics card with at least 8G video memory.

6.3 Here we teach how to prepare a dataset and train it on this framework a)

Select an image

Select an image that needs to be trained; we suggest cropping out some representative

molecules as the original dataset, but one should notice that the image’s bit depth must

be 24 bit not 32 bit. If the bit depth of the image is 32 bit one can simply turn it into 24

bit by saving it as another jpg image.

b) Label training images

(1) open labelme

Open the Prompt console as an administrator, switch to the environment where labelme

is installed, type labelme after the console and press enter.

(2) Label molecules

Click on one of the buttons in the red box, find the picture needing to be annotated and
open it.

Due to the characteristics of the YOLO model, one can only annotate rectangles and
points. If one wants to annotate more than one type of molecule, we recommend first
annotating one type of molecule and then annotating the other types of molecules.
Please indicate the number of annotations for each type of molecule. Then, click the
save button, and one can receive a JSON annotation file with the same name as the
image which it was imported in. c) Augmentation

After obtaining the original images and json files, place them in

./test/image&labels. First, modify the number of keypoints and the number of each type

of molecules in the 'bbox_final.py', 'hrz_final.py', 'vet_final.py', and 'drop_final.py'

files, and adjust the paths. Then, run 'workflow.py'. In this way, we can expand from a

single dataset to approximately two thousand datasets.

Next, the json files need to be converted into xml files. The 'json2txt_feilei.py' file

is used to output the txt format annotation files required by the YOLO model. Run

'workflow2.py' and 'workflow3.py' subsequently, which will copy the dataset to another

folder, 'make-your-yolov5_dataset-main', to split the training and validation datasets.

Simply running the 'voc_split_trainTestVal.py' and 'dataset_cg.py' scripts sequentially

will do.

Finally, the generated dataset should be copied to the model folder, and it will then

be ready for training.

d) Hyperparameters

The hyperparameter settings used in this study prior to training are outlined below:

• lr0: 0.01. Initial learning rate (SGD=1E-2, Adam=1E-3).

• lrf: 0.1. Final OneCycleLR learning rate (lr0 * lrf).

• momentum: 0.937. SGD momentum/Adam beta1.

• weight_decay: 0.0005. Optimizer weight decay (5e-4).

• warmup_epochs: 3.0. Number of warmup epochs (fractions allowed).

• warmup_momentum: 0.8. Initial momentum during warmup.

• warmup_bias_lr: 0.1. Initial bias learning rate during warmup.

• box: 0.05. Weight for the box loss.

• kpt: 0.005. Weight for the keypoint (kpt) loss.

• cls: 0.3. Weight for the classification (cls) loss.

• cls_pw: 1.0. Positive weight for the classification BCELoss.

• obj: 0.7. Weight for the objectness (obj) loss (scaled with pixels).

• obj_pw: 1.0. Positive weight for the objectness BCELoss.

• iou_t: 0.20. IoU training threshold.

• anchor_t: 4.0. Anchor-multiple threshold.

• anchors: 3. Number of anchors per output layer (0 to ignore).

• fl_gamma: 0.0. Focal loss gamma (efficientDet default gamma=1.5).

• hsv_h: 0.3. Image HSV-Hue augmentation (fraction).

• hsv_s: 0.3. Image HSV-Saturation augmentation (fraction).

• hsv_v: 0.3. Image HSV-Value augmentation (fraction).

• degrees: 0.0. Image rotation (+/- degrees).

• translate: 0.0. Image translation (+/- fraction).

• scale: 0.8. Image scale (+/- gain).

• shear: 0.5. Image shear (+/- degrees).

• perspective: 0.0. Image perspective (+/- fraction), range 0-0.001.

• flipud: 0.0. Image flip up-down (probability).

• fliplr: 0.0. Image flip left-right (probability).

• mosaic: 0.8. Image mosaic (probability).

• mixup: 0.3. Image mixup (probability).

e) Train

After opening the model folder, find the 'train_Ncla_nPoint.py' file.

We suggest adjusting the model's parameters in the indicated area, primarily the

'epochs' and 'batch-size' parameters. 'Epochs' denotes how many rounds of the model to

train, and 'batch-size' represents how many images the model can send to the GPU at

once. For instance, with my computer's 8G memory, the highest setting is batch-size =

5, any higher will result in errors. Once these settings are adjusted, the model can begin

training by running 'train_Ncla_nPoint.py'.

f) Detect

After the training is completed, one needs to open the train folder in the run
directory to find the latest training data. There is a weight folder within, and the 'best.pt'
inside represents the best weight file among all the epochs trained, while 'last.pt'

represents the weight file outputted by the last epoch. Generally, we use 'best.pt' for
prediction. Copy 'best.pt' to the weights folder in the main directory, open 'detect.py' in
the compiler, and ensure that the 'weights' parameter defaults to the 'best.pt' just copied.
This allows the model to run the 'detect.py' file for prediction. However, the images
must be placed in the 'data\images' directory for prediction. Therefore, the image with
labels will be in the runs/detect

this parameter can be adjusted to achieve the desired results.

7. Methods of

STM characterization.

We used a custom-designed commercial low-temperature STM system (Bosezi (Beijing)
Co. Ltd.) for in situ characterization under ultra-high vacuum conditions of base
pressures below 1×10-10 mbar. The single crystals (MaTeck GmbH) were cleaned by
several cycles of argon sputtering and annealing under UHV conditions until large
terraces separated by monatomic steps were achieved. The measurements were
performed at liquid nitrogen temperature (~ 77.6 K) if not stated otherwise. STM
imaging was performed with the constant-current mode at typical bias ranges of -1.0 to
-2.0 V and current ranges of 50 to 150 pA.
Sample preparation.

The molecule precursors are commercially available. After degassing under UHV
condition, the molecular precursors were thermally evaporated from a three-fold
organic evaporator onto the metal surfaces in sequential order. The sublimation rates of
both molecular precursors were monitored by a quartz crystal microbalance (SQM160,
INFICON). We developed a LabVIEW based program to ensure that the molecular
evaporation rate was stable for molecular evaporation.
Machine learning model and the program.
a. YOLOv7. The YOLO algorithm is a one-stage method that stands for You Only Look
Once. It is a neural network that can output results by looking at an image only once.
YOLO has released seven versions so far, with YOLOv1 laying the foundation for the
entire YOLO series and subsequent YOLO algorithms constantly improving and
innovating on it. The YOLO algorithm uses a single CNN model to achieve end-to-end
object detection. The core idea is to use the entire image as the input of the network and
directly regress the position of bounding boxes and their categories at the output layer.

file. The fifth parameter can indeed affect the detection/classification ranges, and

b. Image augmentation. Data augmentation technology is used to obtain a large
amount of image data. In the data augmentation process, we first performed geometric
augmentations, followed by the other augmentation techniques. It is worth noting that
the orientations and positions of molecules in the images after geometric augmentations
have changed, which means that the labeling information in the corresponding image
label files also needs to be changed accordingly to ensure the validity of the labeled
data.
c. Programming environment and hardware. The program of the deep learning
framework was run on a personal computer. The requirements of the programming
environment and the references of the hardware can be found in Supplementary Section
6.

8. References
1. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies

Sets New State-of-the-Art for Real-Time Object Detectors.; 2023; pp. 7464–7475.
2. Le, V.-H. Automatic 3D Hand Pose Estimation Based on YOLOv7 and

HandFoldingNet from Egocentric Videos. In Proceedings of the 2022 RIVF
International Conference on Computing and Communication Technologies (RIVF);
December 2022; pp. 161–166.

3. Ding, K.; Xu, Z.; Tong, H.; Liu, H. Data Augmentation for Deep Graph Learning:
A Survey. ACM SIGKDD Explor. Newsl. 2022, 24, 61–77.

4. Roth, K.; Pemula, L.; Zepeda, J.; Schölkopf, B.; Brox, T.; Gehler, P. Towards Total
Recall in Industrial Anomaly Detection.; 2022; pp. 14318–14328.

