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1. YOLOv7 model structure   

a) YOLOv7 Overall Structure   

First, the input image is resized to 640×640 [1] and it is input into the backbone 

network. Then, three layers of feature maps of different sizes are output through the 

head layer network. The predictive results are outputted through Rep and conv. Here, 

taking the COCO dataset as an example, 80 categories are output, and then each output 

(x, y, w, h, and o) is the coordinate position and background; 3 refers to the number of 

anchors, so each layer output is (80+5)×3 = 255 times the size of the feature map, which 

is the final output.  

  
Figure S1. The Backbone and Head of YOLOv7.  

b) Backbone   

There are a total of 50 layers, first passing through 4 convolutional layers, mainly 
consisting of Conv + BN + SiLU [1] (hereinafter referred to as CBS). After four CBSs, 
the feature map changes to 160 * 160 * 128 size. Then, it goes through the ELAN 
module. ELAN is composed of multiple CBSs, and the sizes of the input and output 
features remain unchanged. The number of channels will change in the first two CBSs, 
and the input channels are consistent with the output channels in the subsequent ones.  



After the last CBS, the output is the required channel. Overall, the backbone passes 

through four CBSs, then connects to an ELAN, and then there are three MP + ELAN 

outputs corresponding to the outputs of C3/C4/C5 with sizes of 80 * 80 * 512, 40 * 40 

* 1024, and 20 * 20 * 1024, respectively. Each MP has 5 layers, and ELAN has 8 layers, 

so the total number of backbone layers is 4 + 8 + 13 * 3 = 51 layers. Starting from 0, 

the last layer is the 50th layer.  

  

c) Head  
YOLOv7 Head is actually a "pafpn" structure, the same as in the previous 

YOLOv4 and YOLOv5. First, for the 32-fold down-sampling feature map C5 outputted 

by the backbone, it goes through SPPCSP, and the number of channels changes from 

1024 to 512. First, it fuses with C4 and C3 in a top-down manner to obtain P3, P4, and 

P5; then, it fuses with P4 and P5 in a bottom-up manner. This is basically the same as 

YOLOv5. The difference is that the CSP module in YOLOv5 has been replaced with 

the ELAN-H module, and the down-sampling has become the MP2 layer. For the P3, 

P4, and P5 outputs by "pafpn", the number of channels is adjusted through RepConv, 

and finally the 1×1 convolution is used to predict the class, keypoint [2], and bounding 

box.  

  

2. Image augmentation techniques 
We used the imgaug [3] library for data augmentation. While some data 

augmentation methods may not be obvious to humans, they render a completely new 

image for the computer, which is extremely useful for machine learning. In Table S1, 

we demonstrate the changes brought about by each different data augmentation method 

to the images.  

Table S1. Effects and descriptions of different image augmentation techniques.  
Augmentation 
techniques  Image example  Description  

None  

  

The original image  



 

CoarseDropout  
  

  

A coarser version of 
dropout that generates 
larger missing areas.  

Elastic  

  

Transform images by 
moving pixels locally 
around using 
displacement fields.  

Blurring  

  

A Gaussian blur that 
simulates blur due to the 
camera being out of focus.  

Brightness  

  

An operation that adjusts 
the brightness and will 
simulate various color 
conditions.  

Hue  

  

An operation that adds a 
value directly to the hue 
and will shift the color 
tones in the image.  

Dropout  

  

Set a certain fraction of 
pixels in images to zero.  



Saturation  

  

An operation that adds a 
value directly to the 
saturation and will change 
the intensity of colors in 
the image.  

Rotation  

  

Rotate image.  

Vertical flip  

  

Flip the image upside 
down.  

Horizontal flip  

  

Flip the image left to right.  

Diagonal flip  

  

Flip the image diagonally.  

  

Table S2. Different combinations of data augmentation.  
  Operation  
S1  Rotation, vertical, horizontal, and diagonal flips   

S2  Blurring, dropout, and elastic  
S3  Hue, saturation, and brightness  

  
    



3. More recognition cases  
In addition to the examples shown in the main text, we also conducted molecule 

identifications for other STM images. Under the same parameters, we achieved good 

performances of image recognitions and keypoint identifications. The following images 

show some examples. The first shows the identification of single-component molecules 

(Figure S2). Figure S3 shows the identification of dual-component molecules.  

  
Figure S2. identification of single-component molecules.  

  
Figure S3. Identification of dual-component molecules.  

Figure S4a shows the STM image of two highly similar molecules, molecule 1 and 
molecule 2. Figure S4b represents the detection results obtained by our model, where 
the blue bounding box corresponds to molecule 1 and the orange bounding box 
corresponds to molecule 2. Our model demonstrates an almost excellent detection 
accuracy, revealing its capability to identify molecules that even the human eye might 
struggle to differentiate due to their high similarity.  

From these three additional examples, we are convinced of the accuracy of our model.  



  
Figure S4. Identification of two highly similar molecules.  

  

4. Precision, recall, and mAP  
Precision, recall, and mean Average Precision (mAP) [4] are widely used 

performance metrics in the field of information retrieval and machine learning. 

Precision refers to the proportion of correctly identified positive results among the total 

returned results. It is also called positive predictive value. It is defined as 

Precision = TP / (TP + FP)  
where TP is the number of true positives and FP is the number of false positives. High 

precision indicates a low false-positive rate.  

Recall, also known as sensitivity, hit rate, or true-positive rate, is the ratio of 

correctly identified positive results to the total actual positive cases. It is defined as  

Recall = TP / (TP + FN)  
where FN is the number of false negatives. High recall indicates that the model returns 

most of the relevant results.  

Mean Average Precision (mAP) is a comprehensive metric used in information 

retrieval to measure the effectiveness of ranking algorithms in terms of both recall and 

precision. mAP calculates the average precision values at the point of each relevant 

document in the ranked order of retrieval. The formula involves calculating the Average 

Precision (AP) for each query and then taking the average over all queries:  

mAP = (1 / Q) * Σ (APq)  
where Q is the total number of queries and APq is the Average Precision at each query, 
q. These metrics are critical for understanding the trade-off between precision and 



recall, which is vital for evaluating models in many tasks, particularly in scenarios 
where false positives and false negatives have different costs.  

  

5. Comparison with other ML models  
Table S3. Comparison of other deep-learning models.  

  YOLO (You Only 
Look Once)  

U-Net  Traditional  
CNN  

(Convolutional  
Neural Network)  

Task  Object detection  
Image 

segmentation  
Various computer 

vision tasks  
Architecture  CNN-based with 

anchor boxes  
CNN-based with 
encoder–decoder  CNN-based with 

various 
architectures  

Network structure  Simple architecture 
using 

convolutional 
layers  

Encoder extracts 
features and 

decoder  
maps features  
segmentation 

masks  

Multiple layers  
(convolutional, 

pooling, and fully  
connected) for 

feature extraction  
Data requirements  

Labeled dataset 
with object  

bounding box  
annotations and 

class labels  

Labeled dataset 
with pixel-level 

class labels  

Labeled dataset 
suitable for the 

specific task  

Advantages  Fast inference,  
capable of real-

time object 
detection  

Capable of pixel-
level image  

segmentation,  
good performance 

in detailed  
segmentation tasks  

Effective feature 
extraction, suitable 

for various  
computer vision 

tasks  

Disadvantages  
May have poor 
performance in 
detecting small  

objects and higher 
false-positive rates  

Relatively slower 
compared to  

YOLO, requires 
more training data  

Performance may 
vary depending on 
the specific task 
and architecture  

From the above, it is clear that U-Net requires a larger dataset, while our STM images 
are obtained from our own laboratory, making it difficult to provide a large dataset. 



Therefore, we are seeking a model that can work with a small amount of data. 
Additionally, we are interested in obtaining information regarding molecular keypoints, 
which is inaccessible through semantic segmentation models. Furthermore, considering 
future research projects, we require a model with excellent real-time detection 
capabilities to perform live scanning and data analysis with STM imaging. Considering 
all these factors, we chose the YOLO model.  
  

6. User guideline 

6.1 Programming environment requirements  
Python 3.8 https://www.python.org/ We strongly recommend using anaconda to 

manage the python environment.  

Pytorch 1.12.1 https://pytorch.org/ The main body of our YOLOv7 code comes from 

an open-source project. We also strongly recommend downloading the GPU version of 

pytorch.  

Numpy 1.23.3 We suggest selecting a suitable version for numpy, otherwise the code 

would run incorrectly.  

cudnn 8.1.10, cudatoolkit 11.3 If one wants to correctly use GPU resources and 

download the right version of Pytorch, one must determine the cudnn and cudnntoolkit 

versions and follow the guide document in which Pytorch gives the right version to 

choose.  

Imgaug 0.4.0 https://github.com/aleju/imgaug-doc imgaug is a library for image 

augmentations in machine learning projects.  

Note: In the above we only list the important libraries and corresponding precautions. 

The detailed program running environment is accessible publicly: https://github.com  

/gggg0034/yolov7_keypoint.  
  

6.2 References of the hardware requirements  

CPU 12th Gen intel(R) Core i9 – 12900H 

GPU NVIDIA GeForce RTX 3070Ti Laptop GPU 8G  

Memory 32G    

1 epoch time cost：≤ 8 minutes  

Max batch-size: 5 images  



Note: The above computer hardware configuration is just for reference. We recommend 

using a graphics card with at least 8G video memory.  

  

6.3 Here we teach how to prepare a dataset and train it on this framework a) 

Select an image 

Select an image that needs to be trained; we suggest cropping out some representative 

molecules as the original dataset, but one should notice that the image’s bit depth must 

be 24 bit not 32 bit. If the bit depth of the image is 32 bit one can simply turn it into 24 

bit by saving it as another jpg image. 

b) Label training images  

(1) open labelme  

Open the Prompt console as an administrator, switch to the environment where labelme 

is installed, type labelme after the console and press enter. 

  
(2) Label molecules  

Click on one of the buttons in the red box, find the picture needing to be annotated and 
open it.  



 
Due to the characteristics of the YOLO model, one can only annotate rectangles and 
points. If one wants to annotate more than one type of molecule, we recommend first 
annotating one type of molecule and then annotating the other types of molecules. 
Please indicate the number of annotations for each type of molecule. Then, click the 
save button, and one can receive a JSON annotation file with the same name as the 
image which it was imported in. c) Augmentation  

After obtaining the original images and json files, place them in 

./test/image&labels. First, modify the number of keypoints and the number of each type 

of molecules in the 'bbox_final.py', 'hrz_final.py', 'vet_final.py', and 'drop_final.py' 

files, and adjust the paths. Then, run 'workflow.py'. In this way, we can expand from a 

single dataset to approximately two thousand datasets. 

Next, the json files need to be converted into xml files. The 'json2txt_feilei.py' file 

is used to output the txt format annotation files required by the YOLO model. Run 

'workflow2.py' and 'workflow3.py' subsequently, which will copy the dataset to another 

folder, 'make-your-yolov5_dataset-main', to split the training and validation datasets. 

Simply running the 'voc_split_trainTestVal.py' and 'dataset_cg.py' scripts sequentially 

will do.  

Finally, the generated dataset should be copied to the model folder, and it will then 

be ready for training.  



d) Hyperparameters  

The hyperparameter settings used in this study prior to training are outlined below: 

• lr0: 0.01. Initial learning rate (SGD=1E-2, Adam=1E-3). 

• lrf: 0.1. Final OneCycleLR learning rate (lr0 * lrf). 

• momentum: 0.937. SGD momentum/Adam beta1. 

• weight_decay: 0.0005. Optimizer weight decay (5e-4). 

• warmup_epochs: 3.0. Number of warmup epochs (fractions allowed). 

• warmup_momentum: 0.8. Initial momentum during warmup. 

• warmup_bias_lr: 0.1. Initial bias learning rate during warmup.  

• box: 0.05. Weight for the box loss. 

• kpt: 0.005. Weight for the keypoint (kpt) loss. 

• cls: 0.3. Weight for the classification (cls) loss. 

• cls_pw: 1.0. Positive weight for the classification BCELoss. 

• obj: 0.7. Weight for the objectness (obj) loss (scaled with pixels).  

• obj_pw: 1.0. Positive weight for the objectness BCELoss. 

• iou_t: 0.20. IoU training threshold. 

• anchor_t: 4.0. Anchor-multiple threshold. 

• anchors: 3. Number of anchors per output layer (0 to ignore). 

• fl_gamma: 0.0. Focal loss gamma (efficientDet default gamma=1.5). 

• hsv_h: 0.3. Image HSV-Hue augmentation (fraction). 

• hsv_s: 0.3. Image HSV-Saturation augmentation (fraction).  

• hsv_v: 0.3. Image HSV-Value augmentation (fraction). 

• degrees: 0.0. Image rotation (+/- degrees). 

• translate: 0.0. Image translation (+/- fraction). 

• scale: 0.8. Image scale (+/- gain). 

• shear: 0.5. Image shear (+/- degrees). 

• perspective: 0.0. Image perspective (+/- fraction), range 0-0.001. 

• flipud: 0.0. Image flip up-down (probability). 

• fliplr: 0.0. Image flip left-right (probability). 

• mosaic: 0.8. Image mosaic (probability). 

• mixup: 0.3. Image mixup (probability). 



  

e) Train  

After opening the model folder, find the 'train_Ncla_nPoint.py' file. 

  
We suggest adjusting the model's parameters in the indicated area, primarily the 

'epochs' and 'batch-size' parameters. 'Epochs' denotes how many rounds of the model to 

train, and 'batch-size' represents how many images the model can send to the GPU at 

once. For instance, with my computer's 8G memory, the highest setting is batch-size = 

5, any higher will result in errors. Once these settings are adjusted, the model can begin 

training by running 'train_Ncla_nPoint.py'.  

 
f) Detect  

After the training is completed, one needs to open the train folder in the run 
directory to find the latest training data. There is a weight folder within, and the 'best.pt' 
inside represents the best weight file among all the epochs trained, while 'last.pt' 



represents the weight file outputted by the last epoch. Generally, we use 'best.pt' for 
prediction. Copy 'best.pt' to the weights folder in the main directory, open 'detect.py' in 
the compiler, and ensure that the 'weights' parameter defaults to the 'best.pt' just copied. 
This allows the model to run the 'detect.py' file for prediction. However, the images 
must be placed in the 'data\images' directory for prediction. Therefore, the image with 
labels will be in the runs/detect  

 
this parameter can be adjusted to achieve the desired results.  

7. Methods of 

STM characterization.  

We used a custom-designed commercial low-temperature STM system (Bosezi (Beijing) 
Co. Ltd.) for in situ characterization under ultra-high vacuum conditions of base 
pressures below 1×10-10 mbar. The single crystals (MaTeck GmbH) were cleaned by 
several cycles of argon sputtering and annealing under UHV conditions until large 
terraces separated by monatomic steps were achieved. The measurements were 
performed at liquid nitrogen temperature (~ 77.6 K) if not stated otherwise. STM 
imaging was performed with the constant-current mode at typical bias ranges of -1.0 to 
-2.0 V and current ranges of 50 to 150 pA.  
Sample preparation.  

The molecule precursors are commercially available. After degassing under UHV 
condition, the molecular precursors were thermally evaporated from a three-fold 
organic evaporator onto the metal surfaces in sequential order. The sublimation rates of 
both molecular precursors were monitored by a quartz crystal microbalance (SQM160, 
INFICON). We developed a LabVIEW based program to ensure that the molecular 
evaporation rate was stable for molecular evaporation.  
Machine learning model and the program.  
a. YOLOv7. The YOLO algorithm is a one-stage method that stands for You Only Look 
Once. It is a neural network that can output results by looking at an image only once. 
YOLO has released seven versions so far, with YOLOv1 laying the foundation for the 
entire YOLO series and subsequent YOLO algorithms constantly improving and 
innovating on it. The YOLO algorithm uses a single CNN model to achieve end-to-end 
object detection. The core idea is to use the entire image as the input of the network and 
directly regress the position of bounding boxes and their categories at the output layer.  

file.   The fifth parameter can indeed affect the detection/classification ranges, and  

  

  



b. Image augmentation. Data augmentation technology is used to obtain a large 
amount of image data. In the data augmentation process, we first performed geometric 
augmentations, followed by the other augmentation techniques. It is worth noting that 
the orientations and positions of molecules in the images after geometric augmentations 
have changed, which means that the labeling information in the corresponding image 
label files also needs to be changed accordingly to ensure the validity of the labeled 
data. 
c. Programming environment and hardware. The program of the deep learning 
framework was run on a personal computer. The requirements of the programming 
environment and the references of the hardware can be found in Supplementary Section 
6.  
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