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Details on analytical techniques



XPS studies

High-resolution XPS spectra deconvolutions were obtained with the following definitions and
constrains:

Shirly type background subtraction.

Deconvolution of Cls spectra was obtained with asymmetric line shapes for graphitic C=C bonds

LA(1.2,2.3,0) for pristine MWCNT and LA(1.2,2.1,0) for functional materials. All other bands were
deconvoluted with a GL(30) line shape. Bands C2-C5 were constrained to the same FWHM. In the
final fitting, the % of carbon bonds [sum of components: C1(C=C), C2(C-C and C-H) and C6(m-n*)]

matches the value of C% obtained for the sample. For pristine MWCNT the sum of percentage of
components C3 and C4 matches the value of 0% obtained for the sample.

The deconvolution of the high-resolution spectra in the regions of O1s, N1s, Fls and Zn2p was
carried out using a GL(30) line shape with constrains to the same FWHM.

Raman spectroscopy

Once the D band is a resonant mode and exhibits dispersive behavior, both its position and shape
can vary with different excitation laser frequencies. Therefore, the excitation laser frequency was
maintained for all measurements. A density filter was used to avoid thermal decomposition of
samples by the laser. The 100x objective lens of an Olympus optical microscope was used to focus
the laser beam on the sample and to collect the scattered radiation. A highly sensitive CCD camera
was used to collect the Raman spectra. Each Raman spectrum presented in this study corresponds
to the accumulation of 20 spectra recorded from 1000 to 3500 cm™ over 30 s; five accumulated
spectra were collected for each sample to access the within-sample heterogeneity, at spectral
resolutions near 1 cm™.
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Figure S1. XPS survey spectra of materials in Table 1: (A) original CNT; (B) CNT-F5; (C) CNT-F5pwmr; (D)

CNT-P.
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Figure S2. Photophysical comparison of ZnBNH,TPP (blue) and CNT-P (red) in DMF: (A) Emission

spectra; B) Time-resolved absorption spectra.
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Figure S3. Complete data and different structure perspective for minimization energy calculations
for the three proposed chromophores on CNT-P.



