Previous Issue
Volume 14, June
 
 

Minerals, Volume 14, Issue 7 (July 2024) – 60 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 6758 KiB  
Article
Understanding the Adsorption Mechanism of BTPA, DEPA, and DPPA in the Separation of Malachite from Calcite and Quartz: DFT and Experimental Studies
by Zehui Gao, Chongjun Liu, Tong Lu, Zhiqiang Zhao, Guiye Wu and Yangge Zhu
Minerals 2024, 14(7), 692; https://doi.org/10.3390/min14070692 - 2 Jul 2024
Viewed by 144
Abstract
The relationship between the structure of bis (2,4,4-trimethylpentyl) phosphinic acid (BTPA), diethyl phosphinic acid (DEPA), and diphenyl phosphinic acid (DPPA) on the flotation performance of malachite was investigated. Through a series of flotation experiments, density functional theory (DFT) calculations, and surface analysis methods, [...] Read more.
The relationship between the structure of bis (2,4,4-trimethylpentyl) phosphinic acid (BTPA), diethyl phosphinic acid (DEPA), and diphenyl phosphinic acid (DPPA) on the flotation performance of malachite was investigated. Through a series of flotation experiments, density functional theory (DFT) calculations, and surface analysis methods, we aimed to deeply understand the microscopic mechanism of the interactions between these collectors and the malachite surface. The experimental results showed that BTPA exhibited excellent selectivity and flotation performance for malachite in the pH range of 5.0–11.0, significantly better than DEPA and DPPA. Surface analysis evidence from X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) further confirmed the chemical adsorption characteristics of BTPA on the malachite surface. DFT calculations revealed that the adsorption capacity of BTPA on the malachite surface exceeds that of DEPA and DPPA. Electron transfer analysis, especially through frontier molecular orbital theory, differential charge density, PDOS, and COHP analysis, indicated that the charge transfer process from the s orbitals of oxygen atoms in the collectors to the d orbitals of copper atoms on the mineral surface is the decisive factor for the adsorption strength. Full article
(This article belongs to the Special Issue Advances in Reagents for Mineral Processing, 2nd Edition)
Show Figures

Figure 1

21 pages, 3596 KiB  
Article
Metallurgical Copper Recovery Prediction Using Conditional Quantile Regression Based on a Copula Model
by Heber Hernández, Martín Alberto Díaz-Viera, Elisabete Alberdi, Aitor Oyarbide-Zubillaga and Aitor Goti
Minerals 2024, 14(7), 691; https://doi.org/10.3390/min14070691 - 1 Jul 2024
Viewed by 232
Abstract
This article proposes a novel methodology for estimating metallurgical copper recovery, a critical feature in mining project evaluations. The complexity of modeling this nonadditive variable using geostatistical methods due to low sampling density, strong heterotopic relationships with other measurements, and nonlinearity is highlighted. [...] Read more.
This article proposes a novel methodology for estimating metallurgical copper recovery, a critical feature in mining project evaluations. The complexity of modeling this nonadditive variable using geostatistical methods due to low sampling density, strong heterotopic relationships with other measurements, and nonlinearity is highlighted. As an alternative, a copula-based conditional quantile regression method is proposed, which does not rely on linearity or additivity assumptions and can fit any statistical distribution. The proposed methodology was evaluated using geochemical log data and metallurgical testing from a simulated block model of a porphyry copper deposit. A highly heterotopic sample was prepared for copper recovery, sampled at 10% with respect to other variables. A copula-based nonparametric dependence model was constructed from the sample data using a kernel smoothing method, followed by the application of a conditional quantile regression for the estimation of copper recovery with chalcocite content as secondary variable, which turned out to be the most related. The accuracy of the method was evaluated using the remaining 90% of the data not included in the model. The new methodology was compared to cokriging placed under the same conditions, using performance metrics RMSE, MAE, MAPE, and R2. The results show that the proposed methodology reproduces the spatial variability of the secondary variable without the need for a variogram model and improves all evaluation metrics compared to the geostatistical method. Full article
(This article belongs to the Topic Mining Innovation)
Show Figures

Graphical abstract

18 pages, 6498 KiB  
Article
Phlogopite 40Ar/39Ar Geochronology for Guodian Skarn Fe Deposit in Qihe–Yucheng District, Luxi Block, North China Craton: A Link between Craton Destruction and Fe Mineralization
by Qiwei Feng, Mingbo Gao, Chao Fu, Siyuan Li, Yadong Li, Jilei Gao, Ming Ma, Zhaozhong Wang, Yidan Zhu, Binglu Wu, Zhuang Duan and Zhicai Dang
Minerals 2024, 14(7), 690; https://doi.org/10.3390/min14070690 - 1 Jul 2024
Viewed by 146
Abstract
The Guodian Fe deposit is representative of the newly discovered Qihe–Yucheng high-grade Fe skarn ore cluster, Luxi Block, eastern North China Craton (NCC). The age of the Pandian Fe deposit remains elusive, which hinders the understanding of its metallogenic tectonic background. Phlogopites are [...] Read more.
The Guodian Fe deposit is representative of the newly discovered Qihe–Yucheng high-grade Fe skarn ore cluster, Luxi Block, eastern North China Craton (NCC). The age of the Pandian Fe deposit remains elusive, which hinders the understanding of its metallogenic tectonic background. Phlogopites are recognized in syn-ore stages, and they are closely associated with magnetite in the Guodian skarn Fe deposit. Here, we carried out 40Ar/39Ar dating of phlogopite, which can place a tight constraint on the timing of Guodian iron mineralization and shed light on the geodynamic framework under which the Guodian Fe deposit formed. Ore-related phlogopite 40Ar/39Ar dating yielded 40Ar/39Ar plateau ages of 131.6 ± 1.7 Ma at 890–1400 °C, with the corresponding isochron age being 131.1 ± 2.6 Ma. These two ages are consistent within the error, indicating that they can represent the formation age of the Guodian iron deposit. The mineralization age overlaps the zircon U-Pb age of 124.4 Ma for ore-related Pandian pluton. This age consistency confirms that the iron skarn mineralization is temporally and likely genetically related to Pandian diorite. The present results, coupled with existing isotopic age data, indicate the Guodian skarn Fe deposit formed contemporaneously with large-scale skarn iron mineralization over the Luxi Block in the Late Mesozoic. The available data demonstrated that the eastern NCC was “destructed” in the Late Mesozoic, as marked by voluminous igneous rocks, faulted-basin formation, high crustal heat flow, and widespread metamorphic core complexes in the eastern part of the NCC. It is thus suggested that the Guodian Fe skarn deposits, together with other deposits of similar ages in the Luxi Block and even in the eastern NCC, were products of this craton destruction. Lithospheric extension and extensive magmatism related to the craton destruction may have provided sufficient heat energy, fluid, chlorine, and Fe for the formation of the Fe deposit. Full article
Show Figures

Figure 1

22 pages, 21406 KiB  
Article
What Extra Information Can Be Provided by Multi-Component Seismic Data: A Case Study of 2D3C Prospecting of a Copper–Molybdenum Mine in Inner Mongolia, China
by Yingda Li, Yutian Gu, Yi Zhang, Yun Wang, Guangming Yu and Mingcai Xu
Minerals 2024, 14(7), 689; https://doi.org/10.3390/min14070689 - 30 Jun 2024
Viewed by 310
Abstract
With the decrease in shallow mineral reserves, deep mineral resources have become the focus of exploration. Seismic exploration, renowned for its deep penetration and high spatial resolution and precision, stands as a primary technique in geophysical exploration. In comparison to traditional P-wave seismic [...] Read more.
With the decrease in shallow mineral reserves, deep mineral resources have become the focus of exploration. Seismic exploration, renowned for its deep penetration and high spatial resolution and precision, stands as a primary technique in geophysical exploration. In comparison to traditional P-wave seismic exploration, multi-component seismic techniques offer the advantage of simultaneously acquiring P-wave and S-wave data, overcoming the limitations of single P-wave impedance in predicting lithology and enabling high-precision imaging of subsurface structures. Constrained by field survey costs, the reflection seismic illumination is lower and results in a poor signal-to-noise ratio of multi-component seismic data in metallic ore exploration, which poses great challenges in imaging converted S-waves. Based on the seismic and geological characteristics of metallic ores, this study conducts imaging research on metallic ore models through synthetic data and field multi-component seismic data from a copper–molybdenum mine in Inner Mongolia, China. The emphasis is given to PS-wave pre-stack time migration based on precisely sorting the commonly converted point so as to explore the feasibility and technical advantages of multi-component seismic exploration in metal mines. Synthetic data and field data testing demonstrate that PS-wave imaging contains more abundant structural and lithological information compared to PP-waves, indicating promising prospects for the application of multi-component seismic data in metallic ore exploration. Full article
(This article belongs to the Special Issue Seismics in Mineral Exploration)
16 pages, 10421 KiB  
Article
Differential Characteristics of Conjugate Strike-Slip Faults and Their Controls on Fracture-Cave Reservoirs in the Halahatang Area of the Northern Tarim Basin, NW China
by Shenglei Wang, Lixin Chen, Zhou Su, Hongqi Dong, Bingshan Ma, Bin Zhao, Zhendong Lu and Meng Zhang
Minerals 2024, 14(7), 688; https://doi.org/10.3390/min14070688 - 30 Jun 2024
Viewed by 208
Abstract
The X-type strike-slip fault system and weathering crust karst fracture-cave and channel reservoirs were developed in the Halahatang area of the northern Tarim Basin. However, the relationship between the reservoir and the strike-slip fault remains controversial. Based on the core data, and taking [...] Read more.
The X-type strike-slip fault system and weathering crust karst fracture-cave and channel reservoirs were developed in the Halahatang area of the northern Tarim Basin. However, the relationship between the reservoir and the strike-slip fault remains controversial. Based on the core data, and taking an NE-striking strike-slip fault as an example, this paper dissects the karst reservoir from wells along the strike-slip fault damage zone and analyzes the control of scales, properties, and segmentation styles of strike-slip faults on karst reservoirs. The results show that (1) the scale of the strike-slip fault controls the distribution of the reservoir—the wider the fault damage zone, the wider the fracture-cave reservoirs; (2) the transtensional segments of the strike-slip fault are more likely to produce karstification, and the buried-hill area and the interbedded area are controlled by different hydrodynamic conditions to form different types of karst reservoirs; (3) six different parts of the strike-slip fault are conducive to the formation scale of fault fracture zones. This research provides new insight into recognizing karst reservoirs within strike-slip fault damage zones, which can be further applied to predict karst reservoirs controlled by strike-slip faults. Full article
(This article belongs to the Special Issue Deformation, Diagenesis, and Reservoir in Fault Damage Zone)
21 pages, 4408 KiB  
Article
Genesis of the Ke’eryin Two-Mica Monzogranite in the Ke’eryin Pegmatite-Type Lithium Ore Field, Songpan–Garze Orogenic Belt: Evidence from Lithium Isotopes
by **n Li, Hongzhang Dai, Shanbao Liu, Denghong Wang, Fan Huang, **hua Qin, Yan Sun and Haiyang Zhu
Minerals 2024, 14(7), 687; https://doi.org/10.3390/min14070687 - 29 Jun 2024
Viewed by 288
Abstract
Previous studies on the Ke’eryin pegmatite-type lithium ore field in the Songpan–Ganzi Orogenic Belt have explored the characteristics of the parent rock but have not precisely determined its magma source area. This uncertainty limits our understanding of the regularity of lithium ore formation [...] Read more.
Previous studies on the Ke’eryin pegmatite-type lithium ore field in the Songpan–Ganzi Orogenic Belt have explored the characteristics of the parent rock but have not precisely determined its magma source area. This uncertainty limits our understanding of the regularity of lithium ore formation in this region. In this study, to address the issue of the precise source area of the parent rock of lithium mineralization, a detailed analysis of the Li isotope composition of the ore-forming parent rock (Ke’eryin two-mica monzogranite) and its potential source rocks (Triassic **kang Group metamorphic rocks) was conducted. The δ7Li values of the Ke’eryin two-mica monzogranite, **kang Group metasandstone, and **kang Group mica schist are −3.3–−0.7‰ (average: −1.43‰), +0.1–+6.9‰ (average: +3.83‰), and −9.1–0‰ (average: −5.00‰), respectively. The Li isotopic composition of the Ke’eryin two-mica monzogranite is notably different from the metasandstone and aligns more closely with the mica schist, suggesting that the mica schist is its primary source rock. The heavy Li isotopic composition of the two-mica monzogranite compared to the mica schist may have resulted from the separation of the peritectic garnet into the residual phase during the biotite dehydration melting process. Moreover, the low-temperature weathering of the source rocks may have been the main factor leading to the lighter lithium isotope composition of the **kang Group mica schist compared to the metasandstone. Further analysis suggests that continental crust weathering and crustal folding and thickening play crucial roles in the enrichment of lithium during multi-cycle orogenies. Full article
45 pages, 4063 KiB  
Review
Three-Dimensional Geological Modelling in Earth Science Research: An In-Depth Review and Perspective Analysis
by **aoqin Cao, Ziming Liu, Chenlin Hu, **aolong Song, Jonathan Atuquaye Quaye and Ning Lu
Minerals 2024, 14(7), 686; https://doi.org/10.3390/min14070686 - 29 Jun 2024
Viewed by 437
Abstract
This study examines the development trajectory and current trends of three-dimensional (3D) geological modelling. In recent years, due to the rising global energy demand and the increasing frequency of regional geological disasters, significant progress has been made in this field. The purpose of [...] Read more.
This study examines the development trajectory and current trends of three-dimensional (3D) geological modelling. In recent years, due to the rising global energy demand and the increasing frequency of regional geological disasters, significant progress has been made in this field. The purpose of this study is to clarify the potential complexity of 3D geological modelling, identify persistent challenges, and propose potential avenues for improvement. The main objectives include simplifying the modelling process, improving model accuracy, integrating different data sources, and quantitatively evaluating model parameters. This study integrates global research in this field, focusing on the latest breakthroughs and applications in mineral exploration, engineering geology, geological disaster assessment, and military geosciences. For example, unmanned aerial vehicle (UAV) tilt photography technology, multisource data fusion, 3D geological modelling method based on machine learning, etc. By identifying areas for improvement and making recommendations, this work aims to provide valuable insights to guide the future development of geological modelling toward a more comprehensive and accurate “Transparent Earth”. This review underscores the global applications of 3D geological modelling, highlighting its crucial role across various sectors such as mineral exploration, the oil and gas industry, urban planning, geological hazard assessment, and geoscientific research. The review emphasizes the sector-specific importance of this technology in enhancing modelling accuracy and efficiency, optimizing resource management, driving technological innovation, and improving disaster response capabilities. These insights provide a comprehensive understanding of how 3D geological modelling can significantly impact and benefit multiple industries worldwide. Full article
(This article belongs to the Special Issue 3D/4D Geological Modeling for Mineral Exploration, 2nd Edition)
30 pages, 3040 KiB  
Article
The Tepsi Ultrabasic Intrusion, the Northern Part of the Lapland–Belomorian Belt, Kola Peninsula, Russia
by Andrei Y. Barkov, Andrey A. Nikiforov, Robert F. Martin, Sergey A. Silyanov and Boris M. Lobastov
Minerals 2024, 14(7), 685; https://doi.org/10.3390/min14070685 - 29 Jun 2024
Viewed by 220
Abstract
The Tepsi ultrabasic body is located in the northeastern Fennoscandian Shield close to the junction of the Serpentinite Belt–Tulppio Belt (SB–TB) with suites of the Lapland–Belomorian Belt (LBB) of Paleoproterozoic age. The body is a deformed laccolith that has tectonic contacts with Archean [...] Read more.
The Tepsi ultrabasic body is located in the northeastern Fennoscandian Shield close to the junction of the Serpentinite Belt–Tulppio Belt (SB–TB) with suites of the Lapland–Belomorian Belt (LBB) of Paleoproterozoic age. The body is a deformed laccolith that has tectonic contacts with Archean rocks. Its primary textures and magmatic parageneses are widely preserved. Fine-grained olivine varies continuously from Fo90.5 to Fo65.4. The whole-rock variations in MgO, Fe2O3, SiO2, and other geochemical data are also indicative of a significant extent of differentiation. Compositional variations were examined in the grains of calcic and Mg-Fe amphiboles, clinochlore, micas, plagioclase, members of the chromite–magnetite series, ilmenite, apatite, pentlandite, and a number of other minor mineral species. Low-sulfide disseminated Ni-Cu-Co mineralization occurred sporadically, with the presence of species enriched in As or Bi, submicrometric grains rich in Pt and Ir, or diffuse zones in pentlandite enriched in (Pd + Bi). We recognize two series: the pentlandite series (up to 2.5–3 wt.% Co) and the cobaltpentlandite series (~1 to ~8 apfu Co). The latter accompanied serpentinization. The two series display differences in their substitutions: Ni ↔ Fe and Co → (Ni + Fe), respectively. Relative enrichments in H2O, Cl, and F, observed in grains of apatite (plus high contents of Cl in hibbingite or parahibbingite), point to the abundance of volatiles accumulated during differentiation. We provide the first documentation of scheelite grains in ultrabasic rocks, found in evolved olivine-rich rocks (Fo77–72). We also describe unusual occurrences of hypermagnesian clinopyroxene associated with tremolite and serpentine. Abundant clusters of crystallites of diopside display a microspinifex texture. They likely predated serpentinization and formed due to rapid crystallization in a differentiated portion of a supercooled oxidized melt or, less likely, fluid, after bulk crystallization of the olivine. We infer that the laccolithic Tepsi body crystallized rapidly, in a shallow setting, and could thus not form megacycles in a layered series or produce a well-organized structure. Our findings point to the existence of elevated PGE-Au-Ag potential in numerous ultrabasic–basic complexes of the SB–TB–LBB megastructure. Full article
17 pages, 16927 KiB  
Article
Distribution and Enrichment Mechanisms of Selenium in Stibnite from the Xujiashan Sb Deposit, Hubei Province, China
by Yuhang Liu, Dazhao Wang, Ruolong Huang, Guanzhi Wang, Wei Wan and Yu Kong
Minerals 2024, 14(7), 684; https://doi.org/10.3390/min14070684 - 29 Jun 2024
Viewed by 187
Abstract
The Xujiashan Sb deposit located at the Mufushan fold thrust belt of the Yangtze block is one of the most important Sb deposits in this district. Stibnite in this deposit contains high and various contents of Se, but research on the distribution and [...] Read more.
The Xujiashan Sb deposit located at the Mufushan fold thrust belt of the Yangtze block is one of the most important Sb deposits in this district. Stibnite in this deposit contains high and various contents of Se, but research on the distribution and enrichment of Se in stibnite remains limited. This paper conducts geochemical composition, C-H-O isotopic composition, and scanning electron microscopy morphology of the Xujiashan deposit to discuss the sources of ore-forming materials and fluid, as well as the distribution and enrichment mechanisms of selenium in stibnite. The results showed that the ores have trace element compositions comparable with the wall rocks, and Sb and Se contents are significantly higher than the average carbonate rocks. The δ13CPDB values of calcite and quartz range from −12.8‰ to 5.5‰, the δ18OSMOW values range from 20.4‰ to 24‰, and the δDV-SMOW values range from −57.8‰ to −86.9‰. Trace element and isotope compositions indicate that the ore-forming materials were mainly derived from the wall rocks (sedimentary–metamorphic rocks) that S, Se, and Sb dissolved during fluid–rock interactions. The ore-forming fluids were metamorphic water produced by metamorphism, which had experienced multistage mixing with meteoric water and organic-rich fluids. Selenium substitutes for sulfur in the stibnite crystal lattice, causing rhythmically distributed Se contents in stibnite, which resulted from multistage physicochemical changes in ore-forming fluids during crystallization. The varied patterns of Se contents are the result of different cross-sections of the stibnite. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Figure 1

15 pages, 3157 KiB  
Article
Spectroscopic Identification of Mineral Pigments in White Decorated Prehistoric Pottery from Bulgaria
by Vani Tankova, Victoria Atanassova, Valentin Mihailov and Angelina Pirovska
Minerals 2024, 14(7), 683; https://doi.org/10.3390/min14070683 - 29 Jun 2024
Viewed by 189
Abstract
In the prehistoric period on the Balkan Peninsula, the technology of white decoration underwent a drastic change. At the beginning of the Neolithic white pigment was applied as paint on a polished surface. At the end of the epoch, white paste was inlaid [...] Read more.
In the prehistoric period on the Balkan Peninsula, the technology of white decoration underwent a drastic change. At the beginning of the Neolithic white pigment was applied as paint on a polished surface. At the end of the epoch, white paste was inlaid in incised channels on the surfaces of vessels. This study is focused on the identification of mineral pigments used for white decoration of Neolithic and Chalcolithic pottery from the territory of Bulgaria. The aim of this work is to answer the question of whether the composition of the white pigment varies according to the technique of decoration (paint and inlay). A set of 41 pottery fragments from 11 archaeological sites on the territory of Bulgaria was analyzed utilizing two spectroscopic techniques: laser-induced breakdown spectroscopy (LIBS) and Fourier-transform infrared spectroscopy (FTIR). Additionally, the experimental data from the LIBS were statistically treated with the multivariate technique, principal component analysis (PCA). The results from the spectral analysis indicated that the main constituent in the white decorated sherds is calcite in various combinations with carrier materials like quartz, feldspars, and metal oxides. The statistical analysis revealed that the primal constituent in the inlaid sherds is calcite while in the painted part, the carrier material is dominant. In some particular sherds, gypsum, hydroxylapatite, kaolinite, and aragonite were also detected. Full article
Show Figures

Figure 1

14 pages, 8121 KiB  
Article
Biogenic Calcium Carbonate: Phase Conversion in Aqueous Suspensions
by Brian Espinosa-Acosta, Jake J. Breen, Meghan Burchell and Kristin M. Poduska
Minerals 2024, 14(7), 682; https://doi.org/10.3390/min14070682 - 29 Jun 2024
Viewed by 146
Abstract
Powdered biogenic calcium carbonate from butter clams shows variations in its tendency to convert from aragonite to calcite when suspended in water, depending on whether the suspension has additional calcite or not. Our investigations treat these biogenic samples as complex hierarchical materials, considering [...] Read more.
Powdered biogenic calcium carbonate from butter clams shows variations in its tendency to convert from aragonite to calcite when suspended in water, depending on whether the suspension has additional calcite or not. Our investigations treat these biogenic samples as complex hierarchical materials, considering both their mineral and organic components. We assess the mineral composition from Attenuated Total Reflection Fourier Transform Infrared spectroscopy peak shifts, as well as quantitative assessments of lattice constant refinements (powder X-ray diffraction). To isolate the mineral portions, we compare results from samples where the periostracum is removed mechanically and samples that are heated to temperatures that are sufficient to remove organic material but well below the temperature for thermal phase conversion from aragonite to calcite. The results show that the total organic content does not play a significant role in the aqueous mineral phase conversion. These results have potential implications for understanding carbonate mineral interactions in ocean sediments. Full article
(This article belongs to the Special Issue Texture and Microstructural Analysis of Crystalline Solids, Volume II)
21 pages, 1513 KiB  
Article
Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere
by Deng **ao, **njie Yang, Chao Teng, Tianshe Cheng, Ning Zhu and Jun Cao
Minerals 2024, 14(7), 681; https://doi.org/10.3390/min14070681 - 29 Jun 2024
Viewed by 145
Abstract
A-type granites have been the subject of considerable interest due to their distinct anorogenic geological background. The A-type and arc-related granites are crucial in deciphering the evolution of the ocean closure and continental collision in the Tibet Plateau. The demise of the Bangong–Nujiang [...] Read more.
A-type granites have been the subject of considerable interest due to their distinct anorogenic geological background. The A-type and arc-related granites are crucial in deciphering the evolution of the ocean closure and continental collision in the Tibet Plateau. The demise of the Bangong–Nujiang suture zone (BNSZ) and the Yarlung–Tsangpo suture zone was accompanied by the emplacement of volumes of syn-collisional and post-collisional granites. Controversy has persisted regarding the contribution of the collisional granites within the Lhasa Block to the growth of the Tibetan Plateau. This study provides key evidence about the evolution of the Lhasa Block and Bangong–Nujiang Ocean (BNO) by the newly documented 1200 km long, Early Cretaceous A-type acidic magmatic belt. The resolution was achieved through the utilization of petrology, whole-rock geochemistry, zircon U-Pb geochronology, and in situ zircon Hf isotope analysis of the Burshulaling Granites in the eastern segment and previous existing data in the central and western segment of the Lhasa Block. The Burshulaling Granites are characterized as peraluminous, high-K calc-alkaline series, indicating a post-collision setting with high temperature and low pressure. The zircon grains from two granite samples yield 206Pb/238U ages of 115–113 Ma. In situ zircon Hf analyses with 206Pb/238U ages give εHf(t) of −6.2–0.6, showing prominent characteristics of crust-mantle interaction. Granites from east to west exhibit whole-rock geochemical and geochronological similarities that fall within the well-constrained Early Cretaceous time frame (117–103 Ma) and track post-collisional A-type acidic magmatic belt along BNSZ. We argue that this magmatism resulted from slab break-off or orogenic root detachment, leading to melting and mixing of the lower crust. Meanwhile, this study indicates the existence of the Bangong–Nujiang Ocean southward subduction or a collapse following an Andean-type orogen. Full article
17 pages, 4388 KiB  
Article
Geochemical Study of the Osumi Granodiorite, Southwestern Japan
by Haozhen Xue, Kazuya Shimooka and Motohiro Tsuboi
Minerals 2024, 14(7), 680; https://doi.org/10.3390/min14070680 - 29 Jun 2024
Viewed by 193
Abstract
The Osumi Granodiorite, located on the Osumi Peninsula in southwest Japan, is an example of outer zone granites that were formed during a limited period (13–15 Ma) in response to the subduction of the Philippine Sea Plate. This event, which is linked to [...] Read more.
The Osumi Granodiorite, located on the Osumi Peninsula in southwest Japan, is an example of outer zone granites that were formed during a limited period (13–15 Ma) in response to the subduction of the Philippine Sea Plate. This event, which is linked to the separation of southwest Japan from continental Asia, resulted in unique igneous activity. The Osumi Granodiorite is the largest Miocene granite body in the region. It intrudes into the Mesozoic to Paleogene accretionary complex of the Shimanto Belt and affects contact metamorphism. Despite considerable research on the Osumi Granodiorite, limited geochemical studies, especially on trace and rare earth element (REE) analyses, have been conducted. Furthermore, there are insufficient data on the Rb–Sr isotopic system, leaving the formation process unclear. This study presents whole-rock geochemical and Rb-Sr isotopic data to investigate the petrogenesis of the Osumi Granodiorite. The results suggest a common magma origin for this pluton, as indicated by linear trends on the Harker diagrams and similar REE patterns. The presence of a relatively large Eu anomaly implies formation under a reducing environment. The AKF diagram indicates predominant contamination by pelitic rocks of the Shimanto Belt during magma formation. The Rb–Sr whole-rock isochron diagram and SrI–1000/Sr diagram suggest that the Osumi Granodiorite body was formed by heterogeneous assimilation of magma into the Shimanto Belt. Furthermore, the whole-rock isochron age is 64.3 Ma, which differs by approximately 50 My from the previously reported biotite K–Ar age (14–22 Ma). This age is considered to be a pseudo-isochron age, rather than the consolidation age. During the middle Miocene, the compressive stress field in the outer zone south of the Butsuzo Tectonic Line made it difficult for magma to rise. As a result, it reacted with the sedimentary rocks of the Shimanto Belt to various degrees. The Osumi Granodiorite underwent magma differentiation upon intrusion into the Shimanto Belt. It subsequently ascended, cooled, and interacted with pelitic rocks under stable geological conditions. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

38 pages, 14520 KiB  
Article
Mineralogy and Geochemistry of Titaniferous Iron Ores in El-Baroud Layered Gabbros: Fe-Ti Ore Genesis and Tectono-Metallogenetic Setting
by Mohamed Zaki Khedr, Ahmed Moftah, N. H. El-Shibiny, Akihiro Tamura, Wei Tan, Yuji Ichiyama, Eiichi Takazawa, Ali Y. Kahal and Kamal Abdelrahman
Minerals 2024, 14(7), 679; https://doi.org/10.3390/min14070679 - 29 Jun 2024
Viewed by 221
Abstract
The Neoproterozoic pyroxene gabbros and gabbronorites in the El-Baroud mafic intrusion in the Northern Eastern Desert (NED) of Egypt host Fe-Ti oxide ore deposits. This study discusses the major and trace elements of both titaniferous iron ores and their host rocks, along with [...] Read more.
The Neoproterozoic pyroxene gabbros and gabbronorites in the El-Baroud mafic intrusion in the Northern Eastern Desert (NED) of Egypt host Fe-Ti oxide ore deposits. This study discusses the major and trace elements of both titaniferous iron ores and their host rocks, along with the mineral chemistry (major and in situ trace elements) of interstitial clinopyroxene (Cpx), to gain a deeper understanding of the Fe-Ti oxide genesis. These ores occur as disseminated (55–60 vol.% of Fe-Ti oxides) and massive types (85–95 vol.%) in the form of the dyke, layer, and lens. They are composed of titanomagnetite (80–87 vol.%) with subordinate ilmenite (10–15 vol.%) and magnetite (3–5 vol.%), in accordance with their high Fe2O3 (75.66 wt.% on average) and TiO2 contents (16.30–17.60 wt.%). The Cpx in the investigated ores is diopside composition (Mg#; 0.72–0.83) and exhibits a nearly convex upward REE pattern, similar to Cpxs in the ferropicrite that originated from the primitive mantle. Melts in equilibrium with this Cpx resemble Greenstone ferropicrite melts; the parent melt of El-Baroud gabbros is possibly a ferropicritic melt that was derived from the lithospheric mantle during plume interaction. The El-Baroud gabbroic rocks were generated during the arc rifting and crystallized under a high oxygen fugacity at a temperature of 800–1000 °C and a pressure of 3 kbar with a depth of 12 km. The Fe-Ti oxide ores have been formed from ferropicritic parent melts by two processes, including in situ crystallization that leads to the formation of disseminated Fe-Ti oxides in the iron-rich gabbros at the bottom and liquid immiscibility that is responsible for the formation of thick Fe-Ti ore lenses and layers at the top of the gabbroic intrusion. Initially, titanomagnetite crystallized from the primary Ti-rich oxide melt. As cooling progressed, some of the excess titanium in this melt was exsolved in the form of the exsolution ilmenite lamellae within the titanomagnetite. The Fe-Ti oxide layers in the NED follow the trend of NW-SE (Najd trend), where their distribution is possibly controlled by the composition of parent melts (rich in Ti and Fe), high oxygen fugacity, and the structure related to the Najd fault system. The distribution of Fe-Ti oxide ores increases from the NED to the Southern Eastern Desert (SED), suggesting the dominant mantle plumes and/or shear zones in the SED relative to the NED. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Graphical abstract

24 pages, 3941 KiB  
Article
Unraveling Dry Jigging: Insights into Pulsation, Energy Consumption, and Stratification Dynamics
by Fortunato Lucas Quembo Raposo, Carlos Otávio Petter and Weslei Monteiro Ambrós
Minerals 2024, 14(7), 678; https://doi.org/10.3390/min14070678 - 28 Jun 2024
Viewed by 297
Abstract
The increasing concerns regarding water usage in mineral processing have led to a growing interest in dry jigging in recent years. However, there is still a need for a more comprehensive examination of the operational aspects of the technique. In this sense, this [...] Read more.
The increasing concerns regarding water usage in mineral processing have led to a growing interest in dry jigging in recent years. However, there is still a need for a more comprehensive examination of the operational aspects of the technique. In this sense, this study focused on three main elements: (a) examining the air pulse pattern during dry jig operation; (b) assessing the evolution of the stratification profile over time using partition analysis; and (c) evaluating the specific energy consumption of batch dry jigging during operation. Also, an innovative operational strategy known as "transient pulsing" was proposed and analyzed, involving varying the intensity and frequency of the air pulse throughout the stratification process. All tests were conducted using density tracers spread across 11 density ranges (0.4–2.4 g/cm³) and a base bed (gravel) to analyze their separation in a batch, pilot-scale dry jig. Pressure drop and active power data were collected to measure the pulse characteristics and energy consumption. The airflow curves, obtained through pressure drop data, indicated that the pulsation process is more unstable as the airflow increases, possibly due to the pressure fluctuations experienced by air during valve closure. For the pulsation conditions used in the tests, the specific energy consumption was 10.66 Wh/kg of jigged material, with most of it related to the blower drive system. Analysis of the stratification evolution over time showed an oscillatory behavior, alternating between states of better (Ep < 0.1) and worse (Ep > 0.1) separation, especially for the near-gravity material (NGM). Results of the transient pulsation tests suggested that progressively increasing the vertical displacement of the bed during stratification resulted in slightly better segregation levels and more stable jigging evolution over time in comparison to stationary pulse conditions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
16 pages, 7136 KiB  
Article
Application of Integrated Geological and Geophysical Surveys on the Exploration of Chalcedony Deposits: A Case Study on Nanhong Agate in Liangshan, China
by Sheng** Gong, Keqiang Zhao, Mingming Wang, Shengwu Yan, Yong Li and Jianzhou Yang
Minerals 2024, 14(7), 677; https://doi.org/10.3390/min14070677 - 28 Jun 2024
Viewed by 246
Abstract
Nanhong agate, esteemed for its vivid color and natural shine, is experiencing a scarcity in supply despite its high demand. The primary deposits of agate, typically found near the surface, have not been extensively explored due to the predominance of traditional manual excavation [...] Read more.
Nanhong agate, esteemed for its vivid color and natural shine, is experiencing a scarcity in supply despite its high demand. The primary deposits of agate, typically found near the surface, have not been extensively explored due to the predominance of traditional manual excavation methods. This research examined the Nanhong agate deposits in the Zhaojue–Meigu region of Liangshan, China, employing the integration of geological and geophysical surveys. Field geological surveys allowed us to outline the general areas where agate is found. Following this, using magnetic surveys, vertical electrical sounding, and controlled-source audio magnetotellurics, agate deposits were located within the conglomerate layer of the second member of the Feixianguan Formation from the Lower Triassic period at depths of less than 100 m. Our results identify mineralized layers, Xuanwei Formation mudstone, and the underlying bedrock, thus supporting the creation of a mineral prediction map. This research provides essential insights and guidance for agate exploration and the development of associated mineral resources. Full article
13 pages, 2111 KiB  
Article
Feasibility Analysis of Bacterial-Treated Coal Gangue for Soil Improvement: Growth-Promoting Effects of Alfalfa
by Yaya Wang, Mingwu Liu, Zhiting Di, Weilong Cao and Shihua He
Minerals 2024, 14(7), 676; https://doi.org/10.3390/min14070676 - 28 Jun 2024
Viewed by 169
Abstract
The long-term storage of coal gangue (CG) mountains causes serious environmental problems such as water and air pollution. Thus, sustainable reclamation practices are urgently needed to minimize the environmental impacts brought by CG mountains. Pikovskaya medium was employed to screen microorganisms, which were [...] Read more.
The long-term storage of coal gangue (CG) mountains causes serious environmental problems such as water and air pollution. Thus, sustainable reclamation practices are urgently needed to minimize the environmental impacts brought by CG mountains. Pikovskaya medium was employed to screen microorganisms, which were subsequently utilized to promote the solubilization of CG. XRF, SEM, XRD, and HPLC techniques were employed to characterize the CG before and after bacterial treatment. In this study, we have successfully isolated and purified a bacterial strain, identified as Stenotrophomonas bentonitica BII-R7, which possesses the ability to facilitate the solubilization of nutrient elements from CG. Factors including initial inoculation ratio, incubation time, CG particle size, CG concentration, pH, and temperature were examined to investigate their effects on the biosolubilization of CG. Furthermore, the mechanism underlying the CG solubilization was also probed. Our data demonstrated that low-molecular-weight organic acids, such as acetic acid and formic acid, may harbor a crucial role in promoting the solubilization of CG. Lastly, we found that Stenotrophomonas bentonitica BII-R7, in conjugation with CG, can increase the alfalfa seed germination percentage and promote the growth of alfalfa. Together, these data provide evidence that bacterial-treated CG can be utilized for soil improvement and land reclamation. Full article
(This article belongs to the Section Biomineralization and Biominerals)
16 pages, 1640 KiB  
Article
Mineralogy of Gold, Tellurides and Sulfides from Lianzigou Gold Deposits in the **aoqinling Region, Central China: Implications for Ore-Forming Conditions and Processes
by Guoming Weng, Jiajun Liu, Emmanuel John M. Carranza, Fangfang Zhang, Degao Zhai, Yinhong Wang, Shen Gao, Mingyang Si, Zaixin Su and Yingying Zhang
Minerals 2024, 14(7), 675; https://doi.org/10.3390/min14070675 - 28 Jun 2024
Viewed by 311
Abstract
The Lianzigou deposit, which has an Au–Te paragenetic association, is hosted in plagioclase gneiss of the Qincanggou Formation in the Taihua Group in the **aoqinling region, central China. This quartz vein-type Au deposit comprises native Au and a variety of tellurides. The latter [...] Read more.
The Lianzigou deposit, which has an Au–Te paragenetic association, is hosted in plagioclase gneiss of the Qincanggou Formation in the Taihua Group in the **aoqinling region, central China. This quartz vein-type Au deposit comprises native Au and a variety of tellurides. The latter include calaverite (AuTe2), krennerite (Au3AgTe8), petzite (Au3AgTe2), hessite (Ag2Te), melonite (NiTe2), and altaite (PbTe). Four stages have been recognized in this deposit: stage I consists of K-feldspar and quartz; stage II is of milky quartz veins accompanied by coarse-grained disseminated and lumps of pyrite with weak Au mineralization; stage III is composed mainly of Au, tellurides, and sulfides; and stage IV is characterized by abundant carbonate and quartz. Based on mineral assemblage and thermodynamic data, we estimated the physicochemical conditions of the main metallogenic stages. Based on thermodynamic modelling, the physicochemical conditions of Au–Ag–Te mineral associations were estimated. The Au–Ag–Te minerals from stage III formed mainly under conditions of logƒO2 = −43.15 to −33.31, logƒH2S = ~−9.29, pH < 7, logfTe2 = −10.6 to −9.8 and logαAu+/αAg+ = −7.2 to −6.5. In contrast, the physicochemical conditions of stage II were higher, specifically pH (8.3–8.5) and logƒO2 (−34.90−31.96). In the ore-forming fluids of the Lianzigou deposit, the dominant Au species was Au(HS)2 while the dominant Te species were HTe(aq) and Te22−(aq). Moreover, the Au–Ag–Te metal associations in the Lianzigou Au deposit were derived from mantle materials related to lithospheric thinning of the eastern North China craton in the Early Cretaceous under an extensional tectonic system. Full article
(This article belongs to the Section Mineral Deposits)
12 pages, 1486 KiB  
Article
Use of Submarine Tailings Disposal as Alternative Tailings Management System
by Erol Yilmaz
Minerals 2024, 14(7), 674; https://doi.org/10.3390/min14070674 - 28 Jun 2024
Viewed by 173
Abstract
The importance of the mining/milling industry in increasing the growth level and welfare of countries is quite high. However, at the end of mining/milling processes, huge amounts of waste (often known as tails) are inevitably produced that have no economic value and can [...] Read more.
The importance of the mining/milling industry in increasing the growth level and welfare of countries is quite high. However, at the end of mining/milling processes, huge amounts of waste (often known as tails) are inevitably produced that have no economic value and can even be considered dangerous due to some heavy metals they contain. These tails are highly problematic due to both their volume (difficult to manage environmentally) and toxicity (potential to cause acid/leach waters) and need to be handled outside of existing disposal methods. This article presents the effective and sustainable handling and application of tails resulting from the enrichment of copper–zinc ores, which are actively engaged in metallic mining activities in the northeast of Türkiye, with the submarine tails disposal (STD) method. In the mining operation under study, some (55–60 wt.%) of the tails are employed as underground fill, even though the residual part is disposed of by the STD method. The characterization of ore beneficiation tails, their transportation to the subsea via a pipeline system, and discharge monitoring results are detailed in the present investigation. According to the limitations which are indicated by the Turkish Control of Water Contamination regulation, the concentration of Pb-Cu found in the results was under the allowable limit of 0.05 mg/L. The allowed 2 mg/L limit for Zn was not surpassed mainly by the concentration found in the collected samples. pH values were almost above the allowable limit of pH > 5. The results reveal that the STD technique works quite well as an integrated mine tails method in the mine under study. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
18 pages, 1863 KiB  
Article
Stability Analysis of a Mine Wall Based on Different Roof-Contact Filling Rates
by Jiang Guo, Wenjun Yang, Yan Zhao and Wanzhong Zhang
Minerals 2024, 14(7), 673; https://doi.org/10.3390/min14070673 - 28 Jun 2024
Viewed by 141
Abstract
This study takes the mine wall of the isolated mine pillar in the Dongguashan Copper Mine as the research object. Based on the mechanical model of the mine wall under the trapezoidal loading of the backfill, the expressions for calculating the safety factor [...] Read more.
This study takes the mine wall of the isolated mine pillar in the Dongguashan Copper Mine as the research object. Based on the mechanical model of the mine wall under the trapezoidal loading of the backfill, the expressions for calculating the safety factor of the mine wall were derived by considering the load-bearing conditions of the backfill–mine-wall system under different roof-contacted filling rates. On this basis, the variation law of the safety factor of the mine wall with the roof-contacted filling rate was obtained, and the calculation result was verified by a numerical simulation and a field test. The research shows that for the same mine wall width, when the roof-contacted filling rate exceeds 9.53%, the safety factor of the mine wall exhibits a "trapezoidal" variation pattern with the increase in the roof-contacted filling rate. Moreover, the comprehensive benefits of isolated pillar recovery are made more credible by maintaining a wall width of 3 m and a filler jointing rate between 30% and 74.49%. This study analyzes the effect of the roof-contacted filling rate on the stability of the mine wall, which can provide a theoretical basis for mining isolated pillars by the filler method in deep mines. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
3 pages, 178 KiB  
Editorial
Editorial for Special Issue: “Geochemistry and Mineralogy of Basic–Ultrabasic and Alkaline Intrusions and Related Magmatic Deposits”
by Nadezhda Krivolutskaya
Minerals 2024, 14(7), 672; https://doi.org/10.3390/min14070672 - 28 Jun 2024
Viewed by 120
Abstract
Magmatic deposits are sources of strategic metals provided to the global market. Ultramafic–mafic intrusions contain PGE, Cu-Ni, Cr, Ti, and V deposits, while many rare metal deposits (e.g., Zr, Ta, Nb, Be, Y, Sc, Li, and Ge) are linked to alkaline intrusions.  Full article
37 pages, 46986 KiB  
Article
Barite Replacement as a Key Factor in the Genesis of Sediment-Hosted Zn-Pb±Ba and Barite-Sulfide Deposits: Ore Fluids and Isotope (S and Sr) Signatures from Sediment-Hosted Zn-Pb±Ba Deposits of Iran
by Abdorrahman Rajabi, Pouria Mahmoodi, Pura Alfonso, Carles Canet, Colin Andrew, Saeideh Azhdari, Somaye Rezaei, Zahra Alaminia, Somaye Tamarzadeh, Ali Yarmohammadi, Ghazaleh Khan Mohammadi and Rasoul Saeidi
Minerals 2024, 14(7), 671; https://doi.org/10.3390/min14070671 - 28 Jun 2024
Viewed by 156
Abstract
Iran hosts more than 350 Precambrian to Cenozoic sediment-hosted Zn-Pb±Ba and barite-sulfide deposits, including shale-hosted massive sulfide (SHMS, also called SEDEX) and Irish-type and Mississippi Valley-type (MVT) mineralization, and barite is a common mineral in these deposits. In the SHMS deposits, barite is [...] Read more.
Iran hosts more than 350 Precambrian to Cenozoic sediment-hosted Zn-Pb±Ba and barite-sulfide deposits, including shale-hosted massive sulfide (SHMS, also called SEDEX) and Irish-type and Mississippi Valley-type (MVT) mineralization, and barite is a common mineral in these deposits. In the SHMS deposits, barite is typically found as fine-grained disseminations in thin laminae. In these deposits, the sulfide laminae often occur as diagenetic replacements and as bands containing authigenic and diagenetic barite and pyrite framboids. In the Irish-type Zn-Pb-Ba and stratabound barite-sulfide deposits, barite exhibits various textures, including fine-grained disseminated barite, banded zebra textures, veins, and massive barite lenses. In some of the giant Irish-type deposits, as well as in the stratabound barite-sulfide mineralization, the main stratabound sulfide ore is developed within a barite envelope and is characterized by the replacement of barite and pyrite by chalcopyrite, galena, and sphalerite. In the MVT deposits, the formation of barite is often related to dolomitization, and sulfide mineralization involves the replacement of the dolomitized carbonate rocks, as well as associated barite. Fluid inclusion studies on the Irish-type deposits indicate that the temperatures and salinities of the sulfide-forming fluids are higher compared to those of the barite-forming fluids. Fluid inclusion analyses of coarse-grained barites from Irish and MVT deposits reveal their hydrothermal origin. The δ3⁴S values of sulfide minerals (pyrite, sphalerite, and galena) in Irish-type deposits exhibit a broad range of low values (mostly −28 to +5‰), primarily revealing a process of bacterial sulfate reduction (BSR). However, the textures (replacement, colloform, and banded) and more positive sulfur isotope values (+1 to +36‰) in the SHMS Zn-Pb deposits suggest that bacterial sulfate reduction (BSR) plays a less significant role. We suggest that thermochemical sulfate reduction (TSR) connected to the direct replacement of barite plays a more relevant role in providing sulfur for the sulfide mineralization in the SHMS, barite-sulfide, and MVT deposits. Based on the textual evidence, sulfur isotopic data, and fluid inclusion studies, barite has been identified as a key controller for the subsequent Zn-Pb mineralization by providing a suitable host and significant sulfur contribution in the sediment-hosted Zn-Pb and stratabound barite-sulfide deposits. This implies that diagenetic barite might be a precursor to all types of sediment-hosted Zn-Pb mineralization. Full article
25 pages, 6355 KiB  
Article
Numerical Investigation of the Applicability of Preferential Grade Deportment by Size
by Nazym Baizhiyen, Peter Dowd, Chaoshui Xu and David Lewis
Minerals 2024, 14(7), 670; https://doi.org/10.3390/min14070670 - 28 Jun 2024
Viewed by 255
Abstract
The effective separation of ore is based on two fundamental processes: liberation and separability. Liberation involves the reduction of size, yielding smaller particles with enhanced compositional homogeneity. Understanding liberation requires an understanding of rock breakage, as it impacts mineral liberation and helps identify [...] Read more.
The effective separation of ore is based on two fundamental processes: liberation and separability. Liberation involves the reduction of size, yielding smaller particles with enhanced compositional homogeneity. Understanding liberation requires an understanding of rock breakage, as it impacts mineral liberation and helps identify ores suitable for pre-concentration. Non-random breakage, influenced by textural and mineral properties, introduces heterogeneity in mineral distribution across size fractions. Physical attributes, including ore and gangue mineralogy and texture, influence fractionation tendencies during breakage. Notably, the presence of mineralization in veins substantially assists early-stage liberation in mineral processing. The aim of this study is to develop a methodology that allows the prediction of natural fractionation tendencies based on geological, mineralogical, and textural data using Discrete Element Method (DEM) modeling. DEM simulations provide insights into granular material behavior, capturing phenomena such as crack initiation and propagation. The use of DEM, particularly with models such as the Flat Joint Model (FJM), enhances our understanding of rock damage mechanisms. In this paper, DEM is used to predict preferential grade by size deportment, and a numerical model is developed to reflect grade distributions across size fractions. A fragmentation analysis is conducted after rock breakage simulations using DEM to analyze the fragment sizes and grades and calculate the Response Rankings of synthetic specimens. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 6673 KiB  
Article
In Situ Carbonate U-Pb Dating of Gold and Mercury Deposits in the Youjiang Metallogenic Province, SW China, and Implications for Multistage Mineralization
by **wei Li, Yuzhou Zhuo, Yitong Guo, **nyue Lu and **nlu Hu
Minerals 2024, 14(7), 669; https://doi.org/10.3390/min14070669 - 28 Jun 2024
Viewed by 196
Abstract
The Youjiang metallogenic province (YMP) is a famous ore-concentrating area in South China, known for its substantial Carlin-type gold deposits, antimony deposits, and mercury deposits. Previous studies have yielded conflicting views regarding the ages of mineralization in this area, particularly regarding the occurrence [...] Read more.
The Youjiang metallogenic province (YMP) is a famous ore-concentrating area in South China, known for its substantial Carlin-type gold deposits, antimony deposits, and mercury deposits. Previous studies have yielded conflicting views regarding the ages of mineralization in this area, particularly regarding the occurrence of Yanshanian versus Indosinian ore-forming events during the Mesozoic era. To resolve these discrepancies, this study utilized in situ LA-ICP-MS U-Pb dating on carbonate minerals from the Lannigou Carlin-type Au deposit, the Lanmuchang Hg-(Tl) deposit, and the Sixiangchang Hg deposit to accurately determine their mineralization ages. Our results indicate that the three deposits formed at 137 ± 9 Ma, ~97 Ma, and 454 ± 21 Ma, respectively. By integrating previously reported geochronological data, we propose that the low-temperature Au-As-Sb-Hg-Tl deposits in the YMP were formed during two major periods, Late Triassic and Late Jurassic to Cretaceous, with the latter being more prevalent. Additionally, there was a Paleozoic hydrothermal mercury mineralization event at the northeastern edge of this region. These newly acquired data significantly enhance our understanding of multistage, low-temperature mineralization events in the YMP. Our study also demonstrates that in situ carbonate U-Pb dating is an excellent method for investigating the timing of low-temperature mineralization events. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Graphical abstract

26 pages, 6806 KiB  
Article
Pyrite-Goethite Alteration in Supergene Oxidation Processes in Till: Elemental Distribution and Evaluation of Goethite Usability as a Fingerprinting Tool for Vectoring Mineral Deposits
by Atte Taivalkoski, Jukka-Pekka Ranta, Pertti Sarala, Marko Moilanen, Paavo Nikkola and Tapio Soukka
Minerals 2024, 14(7), 668; https://doi.org/10.3390/min14070668 - 27 Jun 2024
Viewed by 304
Abstract
In the formerly glaciated terrains in the northern hemisphere and countries such as Finland, till is the most common sediment covering the bedrock. Specifically, indicator or heavy mineral studies utilising till as a vector for mineral deposits undercover have been successful. The pyrite [...] Read more.
In the formerly glaciated terrains in the northern hemisphere and countries such as Finland, till is the most common sediment covering the bedrock. Specifically, indicator or heavy mineral studies utilising till as a vector for mineral deposits undercover have been successful. The pyrite trace-element composition from in situ mineral analyses has been shown to be an effective discriminator between different mineral deposit types, and this has led to research using heavy mineral pyrite in till to identify potential mineral deposits in a given area. However, pyrite is easily oxidised in till beds, and thus, alternative methods should be considered. Goethite pseudomorphs are more commonly found in the till sediments as remnants after pyrite oxidation. This study evaluates trace element compositions of goethitised pyrite recovered in the till beds from central Lapland in northern Finland. Intra-grain trace-elemental variations gathered using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) between the intact pyrite core and oxidised rim demonstrated complex dynamics and variations between different trace-element values. For example, Cu, V and Mn exhibited elevated trace-element values in the goethite rim compared to the pyrite core. However, elemental ratios such as Ni/As and Co/Ni remain stable between the pyrite core and oxidised rim. Therefore, these ratios have the potential to be used as a discriminating tool between the pyrite core and oxidised rim. In addition, nanoscale variabilities using focused ion beam (FIB) and transmission electron microscopy (TEM) were utilised to inspect possible nano inclusions within the studied heavy mineral grain. The FIB and TEM studies revealed a nanocrystalline pyrite nodule observation within the goethite rim. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
17 pages, 8826 KiB  
Article
The Middle Triassic Intermediate to Basic Rocks in the Eastern Kunlun Orogenic Belt, Northeast Tibet: Implication for the Paleo-Tethyan Ocean Closure
by Wei Du, Lei Pei, Zuochen Li, Ruibao Li, Youxin Chen, Chengjun Liu, Guochao Chen and **anzhi Pei
Minerals 2024, 14(7), 667; https://doi.org/10.3390/min14070667 - 27 Jun 2024
Viewed by 223
Abstract
Large volumes of Early Mesozoic intermediate to basic igneous rocks related to the evolution of the Paleo-Tethys Ocean are exposed in the East Kunlun Orogenic Belt (EKOB). The petrography, geochemistry, and results of zircon U-Pb dating of Defusheng intermediate to basic rocks from [...] Read more.
Large volumes of Early Mesozoic intermediate to basic igneous rocks related to the evolution of the Paleo-Tethys Ocean are exposed in the East Kunlun Orogenic Belt (EKOB). The petrography, geochemistry, and results of zircon U-Pb dating of Defusheng intermediate to basic rocks from the eastern segment of the EKOB are presented in this report. Zircon U–Pb dating of the intermediate to basic rocks yields ages of 239–245 Ma (Middle Triassic). Defusheng intermediate to basic rocks have low TiO2 contents (0.80–1.47 wt.%) and widely varying MgO (3.14–6.08 wt.%), and are enriched in large ion lithophile elements and light rare earth elements, having a geochemical composition similar to that of island arc basalts. The variation diagrams of major elements indicate that the Defusheng intermediate to basic rocks underwent fractional clinopyroxene and olivine crystallization. Depletion of the high-field-strength elements Nb, Ta, and Ti may have been caused by the mantle wedge having been infiltrated by fluids derived from the subducted slab. The Defusheng intermediate to basic rocks represent magmatic records of the Early Mesozoic oceanic crust subduction in Eastern Kunlun. This indicates that the final closure of the Paleo-Tethyan Ocean and the beginning of collisional orogeny occurred after the Middle Triassic. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 23085 KiB  
Article
Origin of the Kunduleng Granite and Its Associated Uranium Anomaly in the Southern Great **ng’an Range, NE China
by Jiaxing Sun, Deyou Sun, Jun Gou, Dongguang Yang, Changdong Wang, Li Tian and Duo Zhang
Minerals 2024, 14(7), 666; https://doi.org/10.3390/min14070666 - 27 Jun 2024
Viewed by 173
Abstract
The Kunduleng granite hosts one of several significant uranium anomalies within the southern Great **ng’an Range, NE China. Whole-rock geochemistry and mineral chemistry data, along with the zircon U-Pb-Hf isotope have been used to constrain the petrogenesis of this granitic intrusion and the [...] Read more.
The Kunduleng granite hosts one of several significant uranium anomalies within the southern Great **ng’an Range, NE China. Whole-rock geochemistry and mineral chemistry data, along with the zircon U-Pb-Hf isotope have been used to constrain the petrogenesis of this granitic intrusion and the origin of the uranium anomaly. Microscopically, quartz, alkali-feldspar, and plagioclase are the essential mineral constituents of the granite, with minor biotite, while monazite, apatite, xenotime, and zircon are accessory minerals. Geochemically, the silica- and alkali-rich granites show a highly fractionated character with “seagull-shaped” REE patterns and significant negative anomalies of Ba and Sr, along with low Zr/Hf and Nb/Ta ratios. The granite has positive zircon εHf(t) values ranging from +12.7 to +14.5 and crustal model ages (TDM2) of 259–376 Ma, indicating a Paleozoic juvenile crustal source. Uraninite and brannerite are the main radioactive minerals responsible for the uranium anomaly within the Kunduleng granite. Uraninite presents well-developed cubic crystals and occurs as tiny inclusions in quartz and K-feldspar with magmatic characteristics (e.g., elevated ThO2, Y2O3, and REE2O3 contents and low CaO, FeO, and SiO2 concentrations). The calculated U-Th-Pb chemical ages (135.4 Ma) are contemporaneous with the U-Pb zircon age (135.4–135.6 Ma) of the granite, indicating a magmatic genesis for uraninite. The granites are highly differentiated, and extreme magmatic fractionation might be the main mechanism for the initial uranium enrichment. Brannerite is relatively less abundant and typically forms crusts on ilmenite and rutile or it cements them, representing the local redistribution and accumulation of uranium. Full article
(This article belongs to the Special Issue Mineralization in Subduction Zone)
Show Figures

Figure 1

23 pages, 16032 KiB  
Article
Energy Mechanism and Acoustic Emission Characteristics in Rock-Backfill Composite Structure Specimens under Multi-Level Cyclic Loads: Cement-Tailings Ratio Effect
by Dayu Long, Yu Wang, Changhong Li, Yunfeng Wu and Yongyue Hu
Minerals 2024, 14(7), 665; https://doi.org/10.3390/min14070665 - 27 Jun 2024
Viewed by 212
Abstract
This study aimed to investigate the effects of the cement-tailings ratio (CTR) on the fatigue properties, acoustic emission (AE) activities, energy dissipation, and fracture patterns of rock-backfill composite structure (RBCS) samples. The investigation employed multi-level cyclic loading tests combined with acoustic emission monitoring [...] Read more.
This study aimed to investigate the effects of the cement-tailings ratio (CTR) on the fatigue properties, acoustic emission (AE) activities, energy dissipation, and fracture patterns of rock-backfill composite structure (RBCS) samples. The investigation employed multi-level cyclic loading tests combined with acoustic emission monitoring and post-test CT scanning. The results indicated that the fatigue strength and fatigue lifetime of the RBCS samples initially increased and then decreased as the CTR was reduced from 1:4 to 1:12. The energy dissipation characteristics reflected the optimal energy absorption effect of the backfill at a CTR of 1:8. The AE ring counts/energy apparent skip phenomenon corresponded to the stress-strain curve from a dense to sparse pattern. The samples with CTRs of 1:4 and 1:8 showed a more significant increase in the peak frequency band at failure and released more energy. The fracture of the RBCS specimen was dominated by tensile cracking signals accompanied by some shear cracking signals. However, the proportion of shear signals was higher for samples with CTRs of 1:4 and 1:8. Similarly, the b value was smaller at failure. The 3D visualization images revealed that the fracture pattern of the RBCS was a mixed tensile-shear fracture, including shear fracture within the backfill, tensile cracking in the interface, and tensile-shear fracture within the rock. The volume and complexity of cracks increased and then decreased with decreasing CTR, i.e., from 1:4 to 1:12. The evolution of cracks probably involves internal backfill fracturing first, and then the fracture extends into the surrounding rock. A recommendation for the design of CTB was presented in this study to ensure the safety and stability of mine excavations. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 12616 KiB  
Article
Full-Waveform Modeling of Complex Media Seismic Waves for Irregular Topography and Its Application in Metal Ore Exploration
by Wenchao Su, Shoudong Huo and Xuhui Zhou
Minerals 2024, 14(7), 664; https://doi.org/10.3390/min14070664 - 27 Jun 2024
Viewed by 213
Abstract
Seismic exploration has caught widespread attention in metal ore exploration due to its higher resolution. However, the presence of topography and complex underground structures in metal ore exploration complicates seismic records. Therefore, it is essential to apply a numerical simulation method suitable for [...] Read more.
Seismic exploration has caught widespread attention in metal ore exploration due to its higher resolution. However, the presence of topography and complex underground structures in metal ore exploration complicates seismic records. Therefore, it is essential to apply a numerical simulation method suitable for metal ore exploration to study the propagation law of seismic waves in shallow and ore-forming zones, providing reliable theoretical support for multi-component seismic techniques. In particular, the presence of topography generates strong-amplitude surface waves, scattered waves, and converted waves, which consistently distort seismic records and affect the imaging accuracy of the metallogenic belts. Additionally, the propagation of seismic waves is also affected by the anisotropy and viscoelasticity of the underground medium. This paper proposes an elastic wave finite-difference numerical simulation method suitable for irregularly topographical and complex medium conditions, named the comprehensive parameter correction method, which implements a free-surface boundary condition based on the concept of medium averaging. It is algorithmically simple and implies no additional computational costs. Meanwhile, the results obtained by this method are highly consistent with those of the spectral element method, demonstrating its accuracy. By presenting several numerical simulation cases and illustrating the impact of topography and medium conditions on seismic records, this paper demonstrates the necessity of considering irregularly topographical and complex medium conditions in metal ore exploration. In conclusion, the numerical simulation method we propose provides a solid theoretical foundation for the application of seismic exploration methods in metal ore exploration. Full article
(This article belongs to the Special Issue Seismics in Mineral Exploration)
Show Figures

Figure 1

12 pages, 2603 KiB  
Article
Inhibiting Mechanism of High pH on Molybdenite Flotation. An Experimental and DFT Study
by Enxiang Wang, He Wan, Juan** Qu, Peng Yi and **anzhong Bu
Minerals 2024, 14(7), 663; https://doi.org/10.3390/min14070663 - 27 Jun 2024
Viewed by 164
Abstract
The inhibiting mechanism of high pH on the molybdenite flotation was studied using an experimental and DFT method. The experimental results found that adverse effects of pH on molybdenite flotation should be attributed to the adsorption of OH on molybdenite [100] surface [...] Read more.
The inhibiting mechanism of high pH on the molybdenite flotation was studied using an experimental and DFT method. The experimental results found that adverse effects of pH on molybdenite flotation should be attributed to the adsorption of OH on molybdenite [100] surface (MS100). The DFT results show the adsorption energy of H2O/OH to molybdenite [001] surface (MS001) and MS100 is −8.61/288.30 kJ·mol−1 and −226.81/−302.44 kJ·mol−1. These indicate that H2O is weakly adsorbed on MS001, while OH is not. Both H2O and OH can be adsorbed onto MS100. The adsorption energy of OH to MS100 is much stronger than that of H2O. The results of state density and charge transfer of the adsorption of OH on MS100 further show that OH can be chemically adsorbed on MS100 through the bonding of the O atom of OH and the Mo atom of MS100. This causes a significant reduction in the MS100 hydrophobicity and deteriorates the fine molybdenite flotation. Full article
(This article belongs to the Special Issue Advances in Flotation of Copper, Lead and Zinc Minerals)
Show Figures

Figure 1

Previous Issue
Back to TopTop