Previous Issue
Volume 8, June
 
 

ChemEngineering, Volume 8, Issue 4 (August 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
21 pages, 3414 KiB  
Article
Oxalic Acid-Assisted Photo-Fenton Catalysis Using Magnetic Fe3O4 Nanoparticles for Complete Removal of Textile Dye
by Sunil Bhavsar, Pravin Dudhagara, Anjana Ghelani, I Nengah Wirajana, Quyet-Tien Phi, Yih-Yuan Chen and Douglas J. H. Shyu
ChemEngineering 2024, 8(4), 67; https://doi.org/10.3390/chemengineering8040067 - 28 Jun 2024
Viewed by 151
Abstract
Textile industry effluents contain several hazardous substances, such as dye-containing effluents, which pose environmental and aesthetic challenges. Presently, the microbial-based remediation process is in use. This study investigated the application of ferrous–ferric oxide (Fe3O4) nanoparticles, a readily formulated nanoadsorbent, [...] Read more.
Textile industry effluents contain several hazardous substances, such as dye-containing effluents, which pose environmental and aesthetic challenges. Presently, the microbial-based remediation process is in use. This study investigated the application of ferrous–ferric oxide (Fe3O4) nanoparticles, a readily formulated nanoadsorbent, to remove scattered dye molecules from industrial effluents. The ferrous–ferric oxide nanoparticles were prepared using a chemical co-precipitation method. The nanoparticles had 26.93 emu g−1 magnetization, with sizes smaller than 20 nm, and possessed a highly purified cubic spinel crystallite structure. The catalytic activity of the iron oxide depended on the dose, photocatalytic enhancer, i.e., H2O2 level, pH of the reaction medium, and dye concentration. We optimized the Fenton-like reaction to work best using 1.0 g/L of ferrous–ferric oxide nanoparticles, 60 mM oxalic acid at pH 7.0, and 60 ppm of dye. Iron oxides act as photocatalysts, and oxalic acid generates electron–hole pairs. Consequently, higher amounts of super-radicals cause the rapid degradation of dye and pseudo-first-order reactions. Liquid chromatography–mass spectrometry (LC-MS) analysis revealed the ferrous–ferric oxide nanoparticles decolorized and destroyed Disperse Red 277 in 180 min under visible light. Hence, complete demineralization is observed using a photo-Fenton-like reaction within 3 h under visible light. These high-capacity, easy-to-separate next-generation adsorption systems are suggested to be suitable for industrial-scale use. Ferrous–ferric oxide nanoparticles with increased adsorption and magnetic properties could be utilized to clean environmental pollution. Full article
41 pages, 7005 KiB  
Review
Supramolecular Sensing Platforms: Techniques for In Vitro Biosensing
by Hiya Lahiri and Kingshuk Basu
ChemEngineering 2024, 8(4), 66; https://doi.org/10.3390/chemengineering8040066 - 28 Jun 2024
Viewed by 145
Abstract
Supramolecular chemistry is a relatively new field of study that utilizes conventional chemical knowledge to produce new edges of smart materials. One such material use of supramolecular chemistry is the development of sensing platforms. Biologically relevant molecules need frequent assessment both qualitatively and [...] Read more.
Supramolecular chemistry is a relatively new field of study that utilizes conventional chemical knowledge to produce new edges of smart materials. One such material use of supramolecular chemistry is the development of sensing platforms. Biologically relevant molecules need frequent assessment both qualitatively and quantitatively to explore several biological processes. In this review, we have discussed supramolecular sensing techniques with key examples of sensing several kinds of bio-analytes and tried to cast light on how molecular design can help in making smart materials. Moreover, how these smart materials have been finally used as sensing platforms has been discussed as well. Several useful spectroscopic, microscopic, visible, and electronic outcomes of sensor materials have been discussed, with a special emphasis on device-based applications. This kind of comprehensive discussion is necessary to widen the scope of sensing technology. Full article
24 pages, 5955 KiB  
Article
Enhancement in Turbulent Convective Heat Transfer Using Silver Nanofluids: Impact of Citrate, Lipoic Acid, and Silica Coatings
by Wasurat Bunpheng and Ratchagaraja Dhairiyasamy
ChemEngineering 2024, 8(4), 65; https://doi.org/10.3390/chemengineering8040065 - 26 Jun 2024
Viewed by 418
Abstract
This study aims to investigate the thermohydraulic performance of silver nanofluids with different surface modifications (citrate, lipoic acid, and silica) in turbulent convective heat transfer applications. Three silver nanofluids were prepared, each modified with citrate, lipoic acid, or silica coatings. The nanofluids were [...] Read more.
This study aims to investigate the thermohydraulic performance of silver nanofluids with different surface modifications (citrate, lipoic acid, and silica) in turbulent convective heat transfer applications. Three silver nanofluids were prepared, each modified with citrate, lipoic acid, or silica coatings. The nanofluids were characterized for stability using zeta potential measurements and evaluated in a smooth brass tube under turbulent flow conditions. The experimental setup involved measuring the temperature, pressure, and flow rate to assess heat transfer coefficients, pressure drops, and friction factors. The results were compared with distilled water as the base fluid and validated against theoretical models. The silica-shelled nanofluid (Ag/S) exhibited a significant 35% increase in the average heat transfer coefficient compared to distilled water, while the citrate-coated (Ag/C) and lipoic acid-coated (Ag/L) nanofluids showed slight decreases of approximately 0.2% and 2%, respectively. The Ag/S nanofluid demonstrated a 9% increase in the mean Nusselt number, indicating enhanced heat transfer capabilities. However, all modified nanofluids experienced higher pressure drops and friction factors than the base fluid, with the Ag/S nanofluid showing the highest increase in viscosity (11.9%). Surface modifications significantly influence the thermohydraulic performance of silver nanofluids. The silica-shelled nanofluid shows the most substantial enhancement in heat transfer, making it a promising candidate for applications requiring efficient thermal management. However, the increased hydraulic costs associated with higher-pressure drops and friction factors must be carefully managed. Further research is needed to optimize these nanofluids for specific industrial applications, considering long-term stability and the effects of different nanoparticle concentrations and geometries. Full article
Show Figures

Figure 1

22 pages, 610 KiB  
Review
Green Synthesis of Silver Nanoparticles from Cannabis sativa: Properties, Synthesis, Mechanistic Aspects, and Applications
by Fatemeh Ahmadi and Maximilian Lackner
ChemEngineering 2024, 8(4), 64; https://doi.org/10.3390/chemengineering8040064 - 21 Jun 2024
Viewed by 434
Abstract
The increasing global focus on green nanotechnology research has spurred the development of environmentally and biologically safe applications for various nanomaterials. Nanotechnology involves crafting diverse nanoparticles in terms of shapes and sizes, with a particular emphasis on environmentally friendly synthesis routes. Among these, [...] Read more.
The increasing global focus on green nanotechnology research has spurred the development of environmentally and biologically safe applications for various nanomaterials. Nanotechnology involves crafting diverse nanoparticles in terms of shapes and sizes, with a particular emphasis on environmentally friendly synthesis routes. Among these, biogenic approaches, including plant-based synthesis, are favored for their safety, simplicity, and sustainability. Silver nanoparticles, in particular, have garnered significant attention due to their exceptional effectiveness, biocompatibility, and eco-friendliness. Cannabis (Cannabis sativa L.) has emerged as a promising candidate for aiding in the green synthesis of silver nanoparticles. Leveraging the phytochemical constituents of Cannabis, researchers have successfully tailored silver nanoparticles for a wide array of applications, spanning from biomedicine to environmental remediation. This review explores the properties, synthesis mechanisms, and applications of silver nanoparticles obtained from Cannabis. Additionally, it delves into the recent advancements in green synthesis techniques and elucidates the optical properties of these nanoparticles. By shedding light on plant-based fabrication methods for silver nanoparticles and their diverse bionanotechnology applications, this review aims to contribute to the growing body of knowledge in the field of green nanotechnology. Through a comprehensive examination of the synthesis processes, mechanistic aspects, and potential applications, this review underscores the importance of sustainable approaches in nanoparticle synthesis and highlights the potential of Cannabis-derived silver nanoparticles in addressing various societal and environmental challenges. Full article
(This article belongs to the Special Issue Advanced Chemical Engineering in Nanoparticles)
Show Figures

Figure 1

Previous Issue
Back to TopTop