Previous Issue
Volume 9, June
 
 

Int. J. Turbomach. Propuls. Power, Volume 9, Issue 3 (September 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 12832 KiB  
Article
Experimental Investigation of an Efficient and Lightweight Designed Counter-Rotating Shrouded Fan Stage
by Timea Lengyel-Kampmann, Jirair Karboujian, Guillaume Charroin and Peter Winkelmann
Int. J. Turbomach. Propuls. Power 2024, 9(3), 26; https://doi.org/10.3390/ijtpp9030026 - 3 Jul 2024
Viewed by 319
Abstract
The German Aerospace Center designed, aero-mechanically optimized and experimentally investigated its own counter-rotating shrouded fan stage in the frame of the project CRISPmulti. Their target and the motivation of this work was, on the one hand, the generation of a highly accurate experimental [...] Read more.
The German Aerospace Center designed, aero-mechanically optimized and experimentally investigated its own counter-rotating shrouded fan stage in the frame of the project CRISPmulti. Their target and the motivation of this work was, on the one hand, the generation of a highly accurate experimental database for the validation of the modern numerical design and optimization processes, and on the other hand, the development of a new innovative technology for the manufacturing of 3D fan blades made of a lightweight CFRP material. The original CRISP-1m test rig designed by the MTU Aero Engines in the 1980s was reused with the new blading for experimental investigation in the Multistage Two-Shaft Compressor Test Facility (M2VP) of the DLR in Cologne. The evaluation of the steady measurement results and the validation of the numerical simulation based on the pressure and temperature measurement are presented in this paper. Full article
Show Figures

Figure 1

14 pages, 3897 KiB  
Article
Heat Load Development and Heat Map Sensitivity Analysis for Civil Aero-Engines
by Alireza Ebrahimi, Soheil Jafari and Theoklis Nikolaidis
Int. J. Turbomach. Propuls. Power 2024, 9(3), 25; https://doi.org/10.3390/ijtpp9030025 - 2 Jul 2024
Viewed by 376
Abstract
The design complexity of the new generation of civil aero-engines results in higher demands on engines’ components, higher component temperatures, higher heat generation, and, finally, critical thermal management issues. This paper will propose a methodological approach to creating physics-based models for heat loads [...] Read more.
The design complexity of the new generation of civil aero-engines results in higher demands on engines’ components, higher component temperatures, higher heat generation, and, finally, critical thermal management issues. This paper will propose a methodological approach to creating physics-based models for heat loads developed by sources, as well as a systematic sensitivity analysis to identify the effects of design parameters on the thermal behavior of civil aero-engines. The ranges and levels of heat loads generated by heat sources (e.g., accessory gearbox, bearing, pumps, etc.) and the heat absorption capacity of heat sinks (e.g., engine fuel, oil, and air) are discussed systematically. The practical research challenges for thermal management system design and development for the new and next generation of turbofan engines will then be addressed through a sensitivity analysis of the heat load values as well as the heat sink flow rates. The potential solutions for thermal performance enhancements of propulsion systems will be proposed and discussed accordingly. Full article
Show Figures

Figure 1

14 pages, 5033 KiB  
Article
Experimental Investigation of the Sensitivity of Forced Response to Cold Streaks in an Axial Turbine
by Lennart Stania, Felix Ludeneit and Joerg R. Seume
Int. J. Turbomach. Propuls. Power 2024, 9(3), 24; https://doi.org/10.3390/ijtpp9030024 - 2 Jul 2024
Viewed by 317
Abstract
In turbomachinery, geometric variances of the blades, due to manufacturing tolerances, deterioration over a lifetime, or blade repair, can influence overall aerodynamic performance as well as aeroelastic behaviour. In cooled turbine blades, such deviations may lead to streaks of high or low temperature. [...] Read more.
In turbomachinery, geometric variances of the blades, due to manufacturing tolerances, deterioration over a lifetime, or blade repair, can influence overall aerodynamic performance as well as aeroelastic behaviour. In cooled turbine blades, such deviations may lead to streaks of high or low temperature. It has already been shown that hot streaks from the combustors lead to inhomogeneity in the flow path, resulting in increased blade dynamic stress. However, not only hot streaks but also cold streaks occur in modern aircraft engines due to deterioration-induced widening of cooling holes. This work investigates this effect in an experimental setup of a five-stage axial turbine. Cooling air is injected through the vane row of the fourth stage at midspan, and the vibration amplitudes of the blades in rotor stage five are measured with a tip-timing system. The highest injected mass flow rate is 2% of the total mass flow rate for a low-load operating point. The global turbine parameters change between the reference case without cooling air and the cold streak case. This change in operating conditions is compensated such that the corrected operating point is held constant throughout the measurements. It is shown that the cold streak is deflected in the direction of the hub and detected at 40% channel height behind the stator vane of the fifth stage. The averaged vibration amplitude over all blades increases by 20% for the cold streak case compared to the reference during low-load operating of the axial turbine. For operating points with higher loads, however, no increase in averaged vibration amplitude exceeding the measurement uncertainties is observed because the relative cooling mass flow rate is too low. It is shown that the cold streak only influences the pressure side and leads to a widening of the wake deficit. This is identified as the reason for the increased forcing on the blade. The conclusion is that an accurate prediction of the blade’s lifetime requires consideration of the cooling air within the design process and estimation of changes in cooling air mass flow rate throughout the blade’s lifetime. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop