Previous Issue
Volume 5, June
 
 

Telecom, Volume 5, Issue 3 (September 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 1474 KiB  
Article
Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail
by Aruna Mogarala Guruvaya, Archana Kollu, Parameshachari Bidare Divakarachari, Przemysław Falkowski-Gilski and Hirald Dwaraka Praveena
Telecom 2024, 5(3), 537-555; https://doi.org/10.3390/telecom5030028 (registering DOI) - 1 Jul 2024
Viewed by 221
Abstract
In the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied [...] Read more.
In the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied customer demands. In order to obtain a better retail sales forecasting, deep learning models are preferred. In this manuscript, an effective Bi-GRU is proposed for accurate sales forecasting related to E-commerce companies. Initially, retail sales data are acquired from two benchmark online datasets: Rossmann dataset and Walmart dataset. From the acquired datasets, the unreliable samples are eliminated by interpolating missing data, outlier’s removal, normalization, and de-normalization. Then, feature engineering is carried out by implementing the Adaptive Particle Swarm Optimization (APSO) algorithm, Recursive Feature Elimination (RFE) technique, and Minimum Redundancy Maximum Relevance (MRMR) technique. Followed by that, the optimized active features from feature engineering are given to the Bi-Directional Gated Recurrent Unit (Bi-GRU) model for precise retail sales forecasting. From the result analysis, it is seen that the proposed Bi-GRU model achieves higher results in terms of an R2 value of 0.98 and 0.99, a Mean Absolute Error (MAE) of 0.05 and 0.07, and a Mean Square Error (MSE) of 0.04 and 0.03 on the Rossmann and Walmart datasets. The proposed method supports the retail sales forecasting by achieving superior results over the conventional models. Full article
(This article belongs to the Special Issue Digitalization, Information Technology and Social Development)
Show Figures

Figure 1

15 pages, 991 KiB  
Article
Two-Level Clustering Algorithm for Cluster Head Randomly Deployed Wireless Sensor Networks
by Sagun Subedi, Shree Krishna Acharya, Jaehee Lee and Sangil Lee
Telecom 2024, 5(3), 522-536; https://doi.org/10.3390/telecom5030027 - 26 Jun 2024
Viewed by 236
Abstract
Clustering strategy in wireless sensor networks (WSNs) affects the lifetime, adaptability, and energy productivity of the wireless network system. The low-energy adaptive clustering hierarchy (LEACH) protocol is a convention used to improve the lifetime of WSNs. In this paper, a novel energy-efficient clustering [...] Read more.
Clustering strategy in wireless sensor networks (WSNs) affects the lifetime, adaptability, and energy productivity of the wireless network system. The low-energy adaptive clustering hierarchy (LEACH) protocol is a convention used to improve the lifetime of WSNs. In this paper, a novel energy-efficient clustering algorithm is proposed, with the aim of improving the energy efficiency of WSNs by reducing and balancing the energy consumptions. The clustering-based convention adjusts the energy utilization by allowing an equal opportunity for each node to turn them into a cluster head (CH). Two-level clustering (TLC) is introduced by adopting LEACH convention where CH selection process undergoes first and second level of clustering to overcome boundary problem in LEACH protocol. The TLC method structures nodes within the scope of the appointed CHs, in order to extend the lifetime of the system. The simulation results show that, in comparison with state-of-the-art methodologies, our proposed method significantly enhanced the system lifetime. Full article
(This article belongs to the Special Issue Performance Criteria for Advanced Wireless Communications)
14 pages, 4673 KiB  
Article
Experimental Evaluation of a MIMO Radar Performance for ADAS Application
by Federico Dios, Sergio Torres-Benito, Jose A. Lázaro, Josep R. Casas, Jorge Pinazo and Adolfo Lerín
Telecom 2024, 5(3), 508-521; https://doi.org/10.3390/telecom5030026 - 24 Jun 2024
Viewed by 345
Abstract
Among the sensors necessary to equip vehicles with an autonomous driving system, there is a tacit agreement that cameras and some type of radar would be essential. The ability of radar to spatially locate objects (pedestrians, other vehicles, trees, street furniture, and traffic [...] Read more.
Among the sensors necessary to equip vehicles with an autonomous driving system, there is a tacit agreement that cameras and some type of radar would be essential. The ability of radar to spatially locate objects (pedestrians, other vehicles, trees, street furniture, and traffic signs) makes it the most economical complement to the cameras in the visible spectrum in order to give the correct depth to scenes. From the echoes obtained by the radar, some data fusion algorithms will try to locate each object in its correct place within the space surrounding the vehicle. In any case, the usefulness of the radar will be determined by several performance parameters, such as its average error in distance, the maximum errors, and the number of echoes per second it can provide. In this work, we have tested experimentally the AWR1843 MIMO radar from Texas Instruments to measure those parameters. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

Previous Issue
Back to TopTop