Previous Issue
Volume 5, June
 
 

CivilEng, Volume 5, Issue 3 (September 2024) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
10 pages, 13305 KiB  
Review
Sustainable and Innovative Self-Healing Concrete Technologies to Mitigate Environmental Impacts in Construction
by Vinayak Kaushal and Elayna Saeed
CivilEng 2024, 5(3), 549-558; https://doi.org/10.3390/civileng5030029 - 28 Jun 2024
Viewed by 259
Abstract
The production of concrete and the manufacturing process of cement result in a significant carbon footprint, contributing to a large portion of global emissions in structures such as buildings, bridges, roads, and tunnels. Although concrete is an ideal building material that is durable [...] Read more.
The production of concrete and the manufacturing process of cement result in a significant carbon footprint, contributing to a large portion of global emissions in structures such as buildings, bridges, roads, and tunnels. Although concrete is an ideal building material that is durable and long-lasting, it can be susceptible to micro-cracks. These micro-cracks in concrete can allow water and chlorine ions to penetrate the structure, leading to the degradation of the concrete and corrosion of the reinforcement, posing an unacceptable level of structural risk. Self-healing concrete is not a new material in the construction industry but can be characterized by the capability of concrete to repair its cracks autogenously or autonomously. Recent advancements in concrete research and technology have given us a better understanding of concrete’s healing properties. Self-healing concrete combines durability with sustainability while offsetting the high carbon output of concrete manufacturing and production and associated life-cycle costs. Technologies such as microbially induced calcite (calcium carbonate) precipitation, shape-memory polymers, encapsulation methods, hydration, and swelling agents can potentially reduce carbon emissions while enhancing resilience and longevity. This paper examines these technologies and their applications in the construction industry by comprehensively reviewing the literature and available case studies. This study concluded that there are promising advancements and innovations in concrete, particularly when improving upon its autogenous healing properties. The recommendations for future research include exploring more ways to bring the concrete industry and cement manufacturing toward net-zero carbon emissions. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop