molecules-logo

Journal Browser

Journal Browser

LC-MS in Bioanalysis

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Analytical Chemistry".

Deadline for manuscript submissions: closed (30 April 2022) | Viewed by 17999

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
Interests: liquid chromatography–mass spectrometry; high-resolution mass spectrometry; sample preparation; method validation; forensic toxicology; food contaminants; bioactive compounds

E-Mail Website
Guest Editor
Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
Interests: liquid chromatography–mass spectrometry; high-resolution mass spectrometry; sample preparation; forensic toxicology; drug metabolism and pharmacokinetics; metabolomics

Special Issue Information

Dear Colleagues,

The importance of the quantification and/or characterization of drugs as well as endogenous metabolites, proteins, oligonucleotides, etc., is crucial in bioanalytical and biomedical applications. The developments and advances in LC–MS have revolutionized the analytical study of biomolecules by enabling their accurate identification and quantification in an unprecedented manner. We are also witnessing an enormous growth of new technologies, allowing more reliable, faster, and more comprehensive studies than ever before. The typical bioanalytical applications of LC-MS range from therapeutic drug monitoring and pharmacokinetic studies to  -omics applications, especially metabolomics and proteomics; in fact, the determination of abnormal proteins or altered metabolic patterns in patients has certainly extended the use of LC-MS in bioanalysis.

This Special Issue aims to provide a forum for the dissemination of the latest information on new approaches, methods and innovative sample preparation techniques in bioanalytical and biomedical applications of LC-MS.

Prof. Dr. Manuel Sergi
Dr. Camilla Montesano
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at mdpi.longhoe.net by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • LC-MS/MS
  • Drug analysis
  • Biomarkers
  • Metabolomics
  • Biomedical applications
  • Proteomics

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1088 KiB  
Article
Dystrophin Protein Quantification as a Duchenne Muscular Dystrophy Diagnostic Biomarker in Dried Blood Spots Using Multiple Reaction Monitoring Tandem Mass Spectrometry: A Preliminary Study
by Refat M. Nimer, Khalid M. Sumaily, Arwa Almuslat, Mai Abdel Jabar, Essa M. Sabi, Mohammad A. Al-Muhaizea and Anas M. Abdel Rahman
Molecules 2022, 27(12), 3662; https://doi.org/10.3390/molecules27123662 - 7 Jun 2022
Cited by 3 | Viewed by 2217
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle loss, leading to difficulties in movement. Mutations in the DMD gene that code for the protein dystrophin are responsible for the development of DMD disorder, where the synthesis of this [...] Read more.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle loss, leading to difficulties in movement. Mutations in the DMD gene that code for the protein dystrophin are responsible for the development of DMD disorder, where the synthesis of this protein is completely halted. Therefore, circulating dystrophin protein could be a promising biomarker of DMD disease. Current methods for diagnosing DMD have sensitivity, specificity, and reproducibility limitations. Herein, a quantitative liquid chromatography–tandem spectrometry (LC–MS/MS) technique in multiple reaction monitoring (MRM) mode was designed and validated for accurate dystrophin protein measurement in a dried blood spot (DBS). The method was successfully validated on the basis of international guidelines regarding calibration curves, precision, and accuracy. In addition, patients and healthy controls were used to test the amount of dystrophin protein circulating in DBS samples as a potential biomarker for DMD disorders. DMD patients were found to have considerably lower levels than controls. To the best of our knowledge, this is the first study to report dystrophin levels in DBS through LC–MS/MS as a diagnostic marker for DMD to the proposed MRM method, providing a highly specific and sensitive approach to dystrophin quantification in a DBS that can be applied in DMD screening. Full article
(This article belongs to the Special Issue LC-MS in Bioanalysis)
Show Figures

Figure 1

16 pages, 3781 KiB  
Article
Quantitative Analysis of Daporinad (FK866) and Its In Vitro and In Vivo Metabolite Identification Using Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry
by Minjae Park, Byeong Ill Lee, Jangmi Choi, Yuri Park, Seo-** Park, Jeong-Hyeon Lim, Jiyu Lee and Young G. Shin
Molecules 2022, 27(6), 2011; https://doi.org/10.3390/molecules27062011 - 21 Mar 2022
Cited by 1 | Viewed by 2296
Abstract
Daporinad (FK866) is one of the highly specific inhibitors of nicotinamide phosphoribosyl transferase (NAMPT) and known to have its unique mechanism of action that induces the tumor cell apoptosis. In this study, a simple and sensitive liquid chromatography–quadrupole-time-of-flight–mass spectrometric (LC-qTOF-MS) assay has been [...] Read more.
Daporinad (FK866) is one of the highly specific inhibitors of nicotinamide phosphoribosyl transferase (NAMPT) and known to have its unique mechanism of action that induces the tumor cell apoptosis. In this study, a simple and sensitive liquid chromatography–quadrupole-time-of-flight–mass spectrometric (LC-qTOF-MS) assay has been developed for the evaluation of drug metabolism and pharmacokinetics (DMPK) properties of Daporinad in mice. A simple protein precipitation method using acetonitrile (ACN) was used for the sample preparation and the pre-treated samples were separated by a C18 column. The calibration curve was evaluated in the range of 1.02~2220 ng/mL and the quadratic regression (weighted 1/concentration2) was used for the best fit of the curve with a correlation coefficient ≥ 0.99. The qualification run met the acceptance criteria of ±25% accuracy and precision values for QC samples. The dilution integrity was verified for 5, 10 and 30-fold dilution and the accuracy and precision of the dilution QC samples were also satisfactory within ±25% of the nominal values. The stability results indicated that Daporinad was stable for the following conditions: short-term (4 h), long-term (2 weeks), freeze/thaw (three cycles). This qualified method was successfully applied to intravenous (IV) pharmacokinetic (PK) studies of Daporinad in mice at doses of 5, 10 and 30 mg/kg. As a result, it showed a linear PK tendency in the dose range from 5 to 10 mg/kg, but a non-linear PK tendency in the dose of 30 mg/kg. In addition, in vitro and in vivo metabolite identification (Met ID) studies were conducted to understand the PK properties of Daporinad and the results showed that a total of 25 metabolites were identified as ten different types of metabolism in our experimental conditions. In conclusion, the LC-qTOF-MS assay was successfully developed for the quantification of Daporinad in mouse plasma as well as for its in vitro and in vivo metabolite identification. Full article
(This article belongs to the Special Issue LC-MS in Bioanalysis)
Show Figures

Figure 1

11 pages, 5130 KiB  
Article
LC-MS/MS Analysis Elucidates a Daily Rhythm in Orexin A Concentration in the Rat Vitreous Body
by Lukasz Chrobok, Sylwia Bajkacz, Jasmin Daniela Klich and Marian Henryk Lewandowski
Molecules 2021, 26(16), 5036; https://doi.org/10.3390/molecules26165036 - 19 Aug 2021
Cited by 4 | Viewed by 2041
Abstract
Orexins are two neuropeptides synthesised mainly in the brain lateral hypothalamic area. The orexinergic system provides arousal-dependent cues for a plethora of brain centres, playing a vital role in feeding behaviour, regulation of the sleep–wake cycle and circadian rhythms. Recently, orexins were found [...] Read more.
Orexins are two neuropeptides synthesised mainly in the brain lateral hypothalamic area. The orexinergic system provides arousal-dependent cues for a plethora of brain centres, playing a vital role in feeding behaviour, regulation of the sleep–wake cycle and circadian rhythms. Recently, orexins were found to be produced in the retina of an eye; however, their content in the vitreous body and possible daily pattern of expression have not yet been explored. In this manuscript, we describe the development and validation of a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method designed for quantitative bioanalysis of orexin in the rat vitreous body. Orexin was extracted from vitreous body samples with a water:acetonitrile:formic acid (80:20:0.1; v/v/v) mixture followed by vortexing and centrifuging. Separation was performed on a reverse-phase HPLC column under gradient conditions. Orexin was analysed via multiple-reaction monitoring (MRM) in the positive electrospray mode. The total analysis time for each sample was less than 5.0 min. Once the method was fully optimised, it was then validated, following the 2018 FDA guidance on bioanalytical method validations. The calibration curves for orexin (1–500 ng/mL) were constructed using a linear regression with a 1/x2 weighting. The lower limit of quantitation for orexin was 1.0 pg/mL for the vitreous body. Intra-day and inter-day estimates of accuracy and precision were within 10% of their nominal values, indicating that the method is reliable for quantitation of orexin in the rat vitreous body. From the physiological perspective, our results are the first to show daily rhythm of orexin synthesis by the retina with possible implications on the circadian regulation of vision. Full article
(This article belongs to the Special Issue LC-MS in Bioanalysis)
Show Figures

Figure 1

14 pages, 1251 KiB  
Article
Eco-Friendly UPLC–MS/MS Method for Determination of a Fostamatinib Metabolite, Tamatinib, in Plasma: Pharmacokinetic Application in Rats
by Essam Ezzeldin, Muzaffar Iqbal, Yousif A. Asiri, Ahmed Y. A. Sayed and Rashad Alsalahi
Molecules 2021, 26(15), 4663; https://doi.org/10.3390/molecules26154663 - 31 Jul 2021
Cited by 2 | Viewed by 2446
Abstract
Fostamatinib is a prodrug of the active metabolite tamatinib, which is a spleen tyrosine kinase (Syk) inhibitor used in the treatment of primary chronic adult immune thrombocytopenia and rheumatoid arthritis. A highly sensitive, rapid, reliable, and green method was developed and validated using [...] Read more.
Fostamatinib is a prodrug of the active metabolite tamatinib, which is a spleen tyrosine kinase (Syk) inhibitor used in the treatment of primary chronic adult immune thrombocytopenia and rheumatoid arthritis. A highly sensitive, rapid, reliable, and green method was developed and validated using ultra-performance liquid chromatography and tandem mass spectrometry (UPLC–MS/MS) for quantification of tamatinib in rat plasma. Ibrutinib was used as internal standard and liquid–liquid extraction was applied using tert-butyl methyl ether. The analyte was separated on an AcquityTM CSH C18 (2.1 mm × 100 mm, 1.7 µm) column using mobile phase consisting of 10 mM ammonium acetate and acetonitrile (10:90) and the flow rate was 0.25 mL/min. Electrospray ionization (ESI) was carried out in positive mode. Quantitation of tamatinib and the IS was performed using multiple reaction monitoring mode with precursor-to-product transitions of m/z 471.1 > 122.0 and m/z 441.1 > 84.0, respectively. The calibration range was 0.1–1000.0 ng/mL and the linearity of the method was ≥0.997. The developed method greenness was investigated. All principal parameters for the method, including linearity, accuracy, precision, recovery, and stability, were within acceptable ranges. Tamatinib pharmacokinetic study in rats was successfully carried out using the developed method. Full article
(This article belongs to the Special Issue LC-MS in Bioanalysis)
Show Figures

Figure 1

16 pages, 5720 KiB  
Article
Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability
by Sofie Rutjens, Siska Croubels, Siegrid De Baere and Mathias Devreese
Molecules 2021, 26(15), 4598; https://doi.org/10.3390/molecules26154598 - 29 Jul 2021
Cited by 2 | Viewed by 2024
Abstract
Cefquinome and ceftiofur are β-lactam antibiotics used for the treatment of bacterial infections in swine. Although these antimicrobials are administered intramuscularly, the exposure of the gut microbiota to these cephalosporins is not well described. This exposure can contribute to the emergence and spread [...] Read more.
Cefquinome and ceftiofur are β-lactam antibiotics used for the treatment of bacterial infections in swine. Although these antimicrobials are administered intramuscularly, the exposure of the gut microbiota to these cephalosporins is not well described. This exposure can contribute to the emergence and spread of antimicrobials in the environment and to the possible spread of antimicrobial resistance genes. To assess the impact of drug administration on the intestinal excretion of these antimicrobials it is essential to measure the amounts of native compound and metabolites in feces. Two (ultra)-high-performance liquid chromatography-tandem mass spectrometry ((U)HPLC–MS/MS) methods were developed and validated, one for the determination of cefquinome and ceftiofur and the other for the determination of ceftiofur residues, measured as desfuroylceftiofuracetamide, in porcine feces. The matrix-based calibration curve was linear from 5 ng g−1 to 1000 ng g−1 for cefquinome (correlation coefficient (r) = 0.9990 ± 0.0007; goodness of fit (gof) = 3.70 ± 1.43) and ceftiofur (r = 0.9979 ± 0.0009; gof = 5.51 ± 1.14) and quadratic from 30 ng g−1 to 2000 ng g−1 for desfuroylceftiofuracetamide (r = 0.9960 ± 0.0020; gof = 7.31 ± 1.76). The within-day and between-day precision and accuracy fell within the specified ranges. Since β-lactam antibiotics are known to be unstable in feces, additional experiments were conducted to adjust the sampling protocol in order to minimize the impact of the matrix constituents on the stability of the analytes. Immediately after sampling, 500 µL of an 8 µg mL−1 tazobactam solution in water was added to 0.5 g feces, to reduce the degradation in matrix. Full article
(This article belongs to the Special Issue LC-MS in Bioanalysis)
Show Figures

Figure 1

15 pages, 1448 KiB  
Article
Characterization of Metabolites in Plasma, Urine and Feces of Healthy Participants after Taking Brahmi Essence for Twelve Weeks Using LC-ESI-QTOF-MS Metabolomic Approach
by Genet Minale, Tongchai Saesong, Prapapan Temkitthawon, Neti Waranuch, Nitra Nuengchamnong, Krongkarn Chootip, Natakorn Kamkaew, Teeraporn Kongbangkerd, **utda Engsuwan and Kornkanok Ingkaninan
Molecules 2021, 26(10), 2944; https://doi.org/10.3390/molecules26102944 - 15 May 2021
Cited by 6 | Viewed by 3168
Abstract
Brahmi essence, developed from Bacopa monnieri (L.) Wettst. standardized extract and mulberry juice, was proven to improve the memory speed of healthy participants aged 55–80 years old, following a 12-week dietary program. However, the metabolites have not yet been reported. Our objective was [...] Read more.
Brahmi essence, developed from Bacopa monnieri (L.) Wettst. standardized extract and mulberry juice, was proven to improve the memory speed of healthy participants aged 55–80 years old, following a 12-week dietary program. However, the metabolites have not yet been reported. Our objective was to characterize the altered metabolites in the plasma, urine, and feces of healthy volunteers after consumption of Brahmi essence for 12 weeks, using the LC-MS metabolomics approach. The altered metabolites were selected from OPLS-DA S-plots; 15 metabolites in the plasma, 7 in the urine, and 17 in the feces samples were tentatively identified by comparison with an online database and literature. The metabolites in the plasma samples were in the classes of amino acids, acylcarnitine, and phospholipids. Benzeneactamide-4-O-sulphate and 3-hydroxyhippuric acid were found in urine samples. The metabolites in the class of amino acids, together with jujubogenin and pseudojujubogenin, were identified in the fecal samples. The aminoacyl-tRNA, aromatic amino acids, and branched-chain amino acid biosynthetic pathways were mainly related to the identified metabolites in all three samples. It could be implied that those metabolites and their pathways might be linked with the effect of Brahmi essence on memory speed. Full article
(This article belongs to the Special Issue LC-MS in Bioanalysis)
Show Figures

Graphical abstract

12 pages, 1151 KiB  
Article
Serial Hydrolysis for the Simultaneous Analysis of Catecholamines and Steroids in the Urine of Patients with Alopecia Areata
by Yu-Ra Lee, Bark-Lynn Lew, Woo-Young Sim, Jongki Hong and Bong-Chul Chung
Molecules 2021, 26(9), 2734; https://doi.org/10.3390/molecules26092734 - 6 May 2021
Cited by 2 | Viewed by 2047
Abstract
Catecholamines and steroids are well-known neurotransmitters and hormones that rapidly change the excitability of neurons. Alopecia areata is a disease for which the exact cause is unknown, but it is considered to be associated with stress, and so the simultaneous analysis of catecholamines [...] Read more.
Catecholamines and steroids are well-known neurotransmitters and hormones that rapidly change the excitability of neurons. Alopecia areata is a disease for which the exact cause is unknown, but it is considered to be associated with stress, and so the simultaneous analysis of catecholamines and steroids is required for the diagnosis of alopecia areata. Thus, we herein report the simultaneous analysis of catecholamines and steroids bearing different functional groups for the first time, during which it was necessary to carry out a serial hydrolysis procedure. Following hydrolysis of the urine samples to produce the free forms from the urinary conjugates, ethyl acetate extractions were carried out, and chemical derivatization was performed using dansyl chloride to increase the sensitivity of the liquid chromatography–tandem mass spectrometry method. The matrix effects and recoveries of this analytical method were validated, giving values of 85.4–122.9% and 88.8–123.0%, respectively. In addition, the method accuracy and precision were assessed, giving values of 0.4–21.5% and 2.0–21.6% for the intra-day and inter-day precisions, respectively. This validated method was then applied to identify differences between patients with and without alopecia areata, wherein the metanephrine content was found to be significantly higher in the alopecia areata patient group. This quantitative profiling method can also be applied to steroid-dependent diseases, as well as catecholamine-related diseases. Full article
(This article belongs to the Special Issue LC-MS in Bioanalysis)
Show Figures

Figure 1

Back to TopTop